Use of auxiliary data in semi-parametric spatial regression with nonignorable missing responses

M. Geraci, M. Bottai
{"title":"Use of auxiliary data in semi-parametric spatial regression with nonignorable missing responses","authors":"M. Geraci, M. Bottai","doi":"10.1177/1471082006071849","DOIUrl":null,"url":null,"abstract":"We propose a method for reducing the error of the prediction of a quantity of interest when the outcome has missing values that are suspected to be nonignorable and the data are correlated in space. We develop a maximum likelihood approach for the parameter estimation of semi-parametric regressions in a mixed model framework. We apply the proposed method to phytoplankton data collected at fixed stations in the Chesapeake Bay, for which chlorophyll data coming from remote sensing are available. A simulation study is also performed. The availability of a variable correlated to the response allows us to achieve a substantial reduction of the prediction error of the expected value of the smoother, without having to specify a nonignorable model.","PeriodicalId":354759,"journal":{"name":"Statistical Modeling","volume":"97 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/1471082006071849","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

We propose a method for reducing the error of the prediction of a quantity of interest when the outcome has missing values that are suspected to be nonignorable and the data are correlated in space. We develop a maximum likelihood approach for the parameter estimation of semi-parametric regressions in a mixed model framework. We apply the proposed method to phytoplankton data collected at fixed stations in the Chesapeake Bay, for which chlorophyll data coming from remote sensing are available. A simulation study is also performed. The availability of a variable correlated to the response allows us to achieve a substantial reduction of the prediction error of the expected value of the smoother, without having to specify a nonignorable model.
具有不可忽略缺失响应的半参数空间回归中辅助数据的使用
我们提出了一种方法,当结果具有被怀疑是不可忽略的缺失值并且数据在空间中相关时,可以减少对感兴趣数量的预测的误差。本文提出了一种混合模型框架下半参数回归参数估计的极大似然方法。我们将所提出的方法应用于切萨皮克湾固定站点收集的浮游植物数据,其中叶绿素数据来自遥感。并进行了仿真研究。与响应相关的变量的可用性使我们能够大大减少平滑器期望值的预测误差,而不必指定不可忽略的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信