Forgery Detection by Internal Positional Learning of Demosaicing Traces

Quentin Bammey, R. G. V. Gioi, J. Morel
{"title":"Forgery Detection by Internal Positional Learning of Demosaicing Traces","authors":"Quentin Bammey, R. G. V. Gioi, J. Morel","doi":"10.1109/WACV51458.2022.00109","DOIUrl":null,"url":null,"abstract":"We propose 4Point (Forensics with Positional Internal Training), an unsupervised neural network trained to assess the consistency of the image colour mosaic to find forgeries. Positional learning trains the model to learn the modulo-2 position of pixels, leveraging the translation-invariance of CNN to replicate the underlying mosaic and its potential inconsistencies. Internal learning on a single potentially forged image improves adaption and robustness to varied post-processing and counter-forensics measures. This solution beats existing mosaic detection methods, is more robust to various post-processing and counter-forensic artefacts such as JPEG compression, and can exploit traces to which state-of-the-art generic neural networks are blind. Check qbammey.github.io/4point for the code.","PeriodicalId":297092,"journal":{"name":"2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)","volume":"108 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACV51458.2022.00109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

We propose 4Point (Forensics with Positional Internal Training), an unsupervised neural network trained to assess the consistency of the image colour mosaic to find forgeries. Positional learning trains the model to learn the modulo-2 position of pixels, leveraging the translation-invariance of CNN to replicate the underlying mosaic and its potential inconsistencies. Internal learning on a single potentially forged image improves adaption and robustness to varied post-processing and counter-forensics measures. This solution beats existing mosaic detection methods, is more robust to various post-processing and counter-forensic artefacts such as JPEG compression, and can exploit traces to which state-of-the-art generic neural networks are blind. Check qbammey.github.io/4point for the code.
基于去马赛克痕迹内部位置学习的伪造检测
我们提出了4Point(法医与位置内部训练),一个无监督的神经网络训练来评估图像颜色马赛克的一致性,以发现伪造。位置学习训练模型学习像素的模2位置,利用CNN的平移不变性来复制潜在的马赛克及其潜在的不一致性。对单个可能伪造的图像进行内部学习可以提高对各种后处理和反取证措施的适应性和鲁棒性。该解决方案击败了现有的马赛克检测方法,对各种后处理和反取证人工制品(如JPEG压缩)更具鲁棒性,并且可以利用最先进的通用神经网络无法识别的痕迹。检查qbammey.github。代码的Io /4点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信