BDPGx — A big data platform for graph-based pharmacogenomics data

P. Alluri, Janaki Chintalapati, Priyanka Sharma, N. Supriya Pal, S. Shekhar, Prahlada Rao B.B.
{"title":"BDPGx — A big data platform for graph-based pharmacogenomics data","authors":"P. Alluri, Janaki Chintalapati, Priyanka Sharma, N. Supriya Pal, S. Shekhar, Prahlada Rao B.B.","doi":"10.1109/PARCOMPTECH.2017.8068334","DOIUrl":null,"url":null,"abstract":"Pharmacogenomics studies are widely adopted in clinical practices and it helps in understanding the effect of drug and its dosage based on individual's genetic makeup. The pharmacogenomics data available in open repositories are used to find the molecular associations between genes, pathways, diseases and the drug dosage effects. With the advent of various sequencing projects, the data deposited in the repositories are voluminous, multidimensional and are of different formats. The heterogeneous data need to be integrated and visualized in a graphical format to gain meaningful information. We developed a big data platform for querying and visualization of pharmacogenomics data stored in the form of graphs. Initially, the data related to genes, its related pathways and diseases, drugs and chemicals are integrated using Neo4j graph database. A web application is developed to provide an easy to use interface for querying this integrated database. The results are given back in the form of graphs and downloadable text format. The platform is scalable to integrate new databases and extensible to add more properties.","PeriodicalId":219266,"journal":{"name":"2017 National Conference on Parallel Computing Technologies (PARCOMPTECH)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 National Conference on Parallel Computing Technologies (PARCOMPTECH)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PARCOMPTECH.2017.8068334","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Pharmacogenomics studies are widely adopted in clinical practices and it helps in understanding the effect of drug and its dosage based on individual's genetic makeup. The pharmacogenomics data available in open repositories are used to find the molecular associations between genes, pathways, diseases and the drug dosage effects. With the advent of various sequencing projects, the data deposited in the repositories are voluminous, multidimensional and are of different formats. The heterogeneous data need to be integrated and visualized in a graphical format to gain meaningful information. We developed a big data platform for querying and visualization of pharmacogenomics data stored in the form of graphs. Initially, the data related to genes, its related pathways and diseases, drugs and chemicals are integrated using Neo4j graph database. A web application is developed to provide an easy to use interface for querying this integrated database. The results are given back in the form of graphs and downloadable text format. The platform is scalable to integrate new databases and extensible to add more properties.
BDPGx -基于图的药物基因组学数据大数据平台
药物基因组学研究被广泛应用于临床实践,它有助于了解基于个体基因组成的药物作用及其剂量。开放资源库中提供的药物基因组学数据用于发现基因、途径、疾病和药物剂量效应之间的分子关联。随着各种测序项目的出现,存储在存储库中的数据量很大,多维且格式不同。异构数据需要以图形格式进行集成和可视化,以获得有意义的信息。我们开发了一个以图形形式存储的药物基因组学数据查询和可视化大数据平台。最初,利用Neo4j图形数据库整合了与基因、相关途径和疾病、药物和化学品有关的数据。开发了一个web应用程序,为查询该集成数据库提供了一个易于使用的界面。结果以图表和可下载的文本格式返回。该平台可扩展以集成新的数据库,并可扩展以添加更多属性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信