Fast estimation of tridiagonal matrices largest eigenvalue

D. Coelho, V. Dimitrov
{"title":"Fast estimation of tridiagonal matrices largest eigenvalue","authors":"D. Coelho, V. Dimitrov","doi":"10.1109/CCECE.2017.7946693","DOIUrl":null,"url":null,"abstract":"This paper proposes a method for speeding up the estimation of the absolute value of largest eigenvalue of an asymmetric tridiagonal matrix based on Power method. An error analysis shows that the proposed method provide errors no greater than the usual Power method. The proposed method involves the computation of the tridiagonal matrix square under analysis, which is performed through a proposed fast algorithm specially tailored for tridiagonal matrices. We perform numerical simulations on Matlab® platform showing the reliability of the method and the claimed speedup using Sylvester-Kac test matrix.","PeriodicalId":238720,"journal":{"name":"2017 IEEE 30th Canadian Conference on Electrical and Computer Engineering (CCECE)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 30th Canadian Conference on Electrical and Computer Engineering (CCECE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCECE.2017.7946693","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper proposes a method for speeding up the estimation of the absolute value of largest eigenvalue of an asymmetric tridiagonal matrix based on Power method. An error analysis shows that the proposed method provide errors no greater than the usual Power method. The proposed method involves the computation of the tridiagonal matrix square under analysis, which is performed through a proposed fast algorithm specially tailored for tridiagonal matrices. We perform numerical simulations on Matlab® platform showing the reliability of the method and the claimed speedup using Sylvester-Kac test matrix.
三对角矩阵最大特征值的快速估计
本文提出了一种基于幂函数法的非对称三对角矩阵最大特征值绝对值的快速估计方法。误差分析表明,该方法提供的误差不大于通常的Power方法。该方法涉及到所分析的三对角矩阵平方的计算,并通过一种专门针对三对角矩阵的快速算法来实现。我们在Matlab®平台上进行了数值模拟,显示了该方法的可靠性和使用Sylvester-Kac测试矩阵所声称的加速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信