Blending Noisy Social Media Signals with Traditional Movement Variables to Predict Forced Migration

L. Singh, Laila Wahedi, Yanchen Wang, Yifang Wei, Christo Kirov, Susan F. Martin, K. Donato, Yaguang Liu, Kornraphop Kawintiranon
{"title":"Blending Noisy Social Media Signals with Traditional Movement Variables to Predict Forced Migration","authors":"L. Singh, Laila Wahedi, Yanchen Wang, Yifang Wei, Christo Kirov, Susan F. Martin, K. Donato, Yaguang Liu, Kornraphop Kawintiranon","doi":"10.1145/3292500.3330774","DOIUrl":null,"url":null,"abstract":"Worldwide displacement due to war and conflict is at all-time high. Unfortunately, determining if, when, and where people will move is a complex problem. This paper proposes integrating both publicly available organic data from social media and newspapers with more traditional indicators of forced migration to determine when and where people will move. We combine movement and organic variables with spatial and temporal variation within different Bayesian models and show the viability of our method using a case study involving displacement in Iraq. Our analysis shows that incorporating open-source generated conversation and event variables maintains or improves predictive accuracy over traditional variables alone. This work is an important step toward understanding how to leverage organic big data for societal--scale problems.","PeriodicalId":186134,"journal":{"name":"Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining","volume":"194 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3292500.3330774","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

Worldwide displacement due to war and conflict is at all-time high. Unfortunately, determining if, when, and where people will move is a complex problem. This paper proposes integrating both publicly available organic data from social media and newspapers with more traditional indicators of forced migration to determine when and where people will move. We combine movement and organic variables with spatial and temporal variation within different Bayesian models and show the viability of our method using a case study involving displacement in Iraq. Our analysis shows that incorporating open-source generated conversation and event variables maintains or improves predictive accuracy over traditional variables alone. This work is an important step toward understanding how to leverage organic big data for societal--scale problems.
混合嘈杂的社交媒体信号和传统的移动变量来预测被迫迁移
世界范围内由于战争和冲突造成的流离失所达到历史最高水平。不幸的是,决定人们是否、何时、何地迁移是一个复杂的问题。本文建议将来自社交媒体和报纸的公开有机数据与更传统的被迫迁移指标结合起来,以确定人们将在何时何地迁移。我们将运动和有机变量与不同贝叶斯模型中的空间和时间变化结合起来,并通过一个涉及伊拉克流离失所的案例研究显示了我们方法的可行性。我们的分析表明,与传统变量相比,合并开源生成的会话和事件变量保持或提高了预测的准确性。这项工作是理解如何利用有机大数据解决社会规模问题的重要一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信