Text generation by probabilistic suffix tree language model

S. Marukatat
{"title":"Text generation by probabilistic suffix tree language model","authors":"S. Marukatat","doi":"10.1109/iSAI-NLP54397.2021.9678167","DOIUrl":null,"url":null,"abstract":"During last decade, language modeling has been dominated by neural structures; RNN, LSTM or Transformer. These neural language models provide excellent performance to the detriment of very high computational cost. This work investigates the use of probabilistic language model that requires much less computational cost. In particular, we are interested in variable-order Markov model that can be efficiently implemented on a probabilistic suffix tree (PST) structure. The PST construction is cheap and can be easily scaled to very large dataset. Experimental results show that this model can be used to generated realistic sentences.","PeriodicalId":339826,"journal":{"name":"2021 16th International Joint Symposium on Artificial Intelligence and Natural Language Processing (iSAI-NLP)","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 16th International Joint Symposium on Artificial Intelligence and Natural Language Processing (iSAI-NLP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iSAI-NLP54397.2021.9678167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

During last decade, language modeling has been dominated by neural structures; RNN, LSTM or Transformer. These neural language models provide excellent performance to the detriment of very high computational cost. This work investigates the use of probabilistic language model that requires much less computational cost. In particular, we are interested in variable-order Markov model that can be efficiently implemented on a probabilistic suffix tree (PST) structure. The PST construction is cheap and can be easily scaled to very large dataset. Experimental results show that this model can be used to generated realistic sentences.
基于概率后缀树语言模型的文本生成
在过去的十年里,语言建模一直被神经结构所主导;RNN, LSTM或Transformer。这些神经语言模型提供了优异的性能,但代价很高。这项工作研究了概率语言模型的使用,它需要更少的计算成本。我们特别感兴趣的是可以在概率后缀树(PST)结构上有效实现的变阶马尔可夫模型。PST构建成本低,可以很容易地扩展到非常大的数据集。实验结果表明,该模型可以用于生成真实的句子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信