Adaptive and fast scale invariant feature extraction

E. Frontoni, P. Zingaretti
{"title":"Adaptive and fast scale invariant feature extraction","authors":"E. Frontoni, P. Zingaretti","doi":"10.5220/0002066801170125","DOIUrl":null,"url":null,"abstract":"The Scale Invariant Feature Transform, SIFT, has been successfully applied to robot vision, object recognition, motion estimation, etc. Still, the parameter settings are not fully investigated, especially when dealing with variable lighting conditions. In this work, we propose a SIFT improvement that allows feature extraction and matching between images taken under different illumination. Also an interesting approach to reduce the SIFT computational time is presented. Finally, results of robot vision based localization experiments using the proposed approach are presented.","PeriodicalId":411140,"journal":{"name":"International Conference on Computer Vision Theory and Applications","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Computer Vision Theory and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0002066801170125","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

The Scale Invariant Feature Transform, SIFT, has been successfully applied to robot vision, object recognition, motion estimation, etc. Still, the parameter settings are not fully investigated, especially when dealing with variable lighting conditions. In this work, we propose a SIFT improvement that allows feature extraction and matching between images taken under different illumination. Also an interesting approach to reduce the SIFT computational time is presented. Finally, results of robot vision based localization experiments using the proposed approach are presented.
自适应快速尺度不变特征提取
尺度不变特征变换(SIFT)已成功应用于机器人视觉、目标识别、运动估计等领域。然而,参数设置并没有得到充分的研究,特别是在处理可变照明条件时。在这项工作中,我们提出了一种改进SIFT的方法,允许在不同照明下拍摄的图像之间进行特征提取和匹配。提出了一种减少SIFT计算时间的方法。最后,给出了基于该方法的机器人视觉定位实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信