Theoretical Realization of a Two Qubit Quantum Controlled-NOT Logic Gate and a Single Qubit Quantum Hadamard Logic Gate in the Anti-Jaynes-Cummings Model
{"title":"Theoretical Realization of a Two Qubit Quantum Controlled-NOT Logic Gate and a Single Qubit Quantum Hadamard Logic Gate in the Anti-Jaynes-Cummings Model","authors":"Christopher Mayero, Joseph Omolo, S. Okeyo","doi":"10.11648/J.IJAMTP.20210704.13","DOIUrl":null,"url":null,"abstract":"Quantum gates are fundamental in Quantum computing for their role in manipulating elementary information carriers referred to as quantum bits. In this paper, a theoretical scheme for realizing a quantum Hadamard and a quantum controlled-NOT logic gates operations in the anti-Jaynes-Cummings interaction process is provided. Standard Hadamard operation for a specified initial atomic state is achieved by setting a specific sum frequency and photon number in the normalized anti-Jaynes-Cummings qubit state transition operation with the interaction component of the anti-Jaynes-Cummings Hamiltonian generating the state transitions. The quantum controlled-NOT logic gate is realized when a single atomic qubit defined in a two-dimensional Hilbert space is the control qubit and two non-degenerate and orthogonal polarized cavities defined in a two-dimensional Hilbert space make the target qubit. With precise choice of interaction time in the anti-Jaynes-Cummings qubit state transition operations defined in the anti-Jaynes-Cummings sub-space spanned by normalized but non-orthogonal basic qubit state vectors, ideal unit probabilities of success in the quantum controlled-NOT operations is determined.","PeriodicalId":367229,"journal":{"name":"International Journal of Applied Mathematics and Theoretical Physics","volume":"116 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Mathematics and Theoretical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/J.IJAMTP.20210704.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Quantum gates are fundamental in Quantum computing for their role in manipulating elementary information carriers referred to as quantum bits. In this paper, a theoretical scheme for realizing a quantum Hadamard and a quantum controlled-NOT logic gates operations in the anti-Jaynes-Cummings interaction process is provided. Standard Hadamard operation for a specified initial atomic state is achieved by setting a specific sum frequency and photon number in the normalized anti-Jaynes-Cummings qubit state transition operation with the interaction component of the anti-Jaynes-Cummings Hamiltonian generating the state transitions. The quantum controlled-NOT logic gate is realized when a single atomic qubit defined in a two-dimensional Hilbert space is the control qubit and two non-degenerate and orthogonal polarized cavities defined in a two-dimensional Hilbert space make the target qubit. With precise choice of interaction time in the anti-Jaynes-Cummings qubit state transition operations defined in the anti-Jaynes-Cummings sub-space spanned by normalized but non-orthogonal basic qubit state vectors, ideal unit probabilities of success in the quantum controlled-NOT operations is determined.