Audiovisual-to-Articulatory Speech Inversion Using HMMs

Athanasios Katsamanis, G. Papandreou, P. Maragos
{"title":"Audiovisual-to-Articulatory Speech Inversion Using HMMs","authors":"Athanasios Katsamanis, G. Papandreou, P. Maragos","doi":"10.1109/MMSP.2007.4412915","DOIUrl":null,"url":null,"abstract":"We address the problem of audiovisual speech inversion, namely recovering the vocal tract's geometry from auditory and visual speech cues. We approach the problem in a statistical framework, combining ideas from multistream Hidden Markov Models and canonical correlation analysis, and demonstrate effective estimation of the trajectories followed by certain points of interest in the speech production system. Our experiments show that exploiting both audio and visual modalities clearly improves performance relative to either audio-only or visual-only estimation. We report experiments on the QSMT database which contains audio, video, and electromagnetic articulography data recorded in parallel.","PeriodicalId":225295,"journal":{"name":"2007 IEEE 9th Workshop on Multimedia Signal Processing","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE 9th Workshop on Multimedia Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMSP.2007.4412915","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

We address the problem of audiovisual speech inversion, namely recovering the vocal tract's geometry from auditory and visual speech cues. We approach the problem in a statistical framework, combining ideas from multistream Hidden Markov Models and canonical correlation analysis, and demonstrate effective estimation of the trajectories followed by certain points of interest in the speech production system. Our experiments show that exploiting both audio and visual modalities clearly improves performance relative to either audio-only or visual-only estimation. We report experiments on the QSMT database which contains audio, video, and electromagnetic articulography data recorded in parallel.
使用hmm的视听-发音语音反转
我们解决了视听语音反转的问题,即从听觉和视觉语音线索中恢复声道的几何形状。我们在统计框架中处理这个问题,结合了多流隐马尔可夫模型和典型相关分析的思想,并演示了语音产生系统中某些兴趣点之后的轨迹的有效估计。我们的实验表明,利用音频和视觉模式明显提高性能相对于音频或视觉的唯一估计。我们报告了在QSMT数据库上的实验,该数据库包含并行记录的音频、视频和电磁关节图数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信