Development of a high temperature transducer backing element with porous ceramics

M. Amini, A. Sinclair, T. Coyle
{"title":"Development of a high temperature transducer backing element with porous ceramics","authors":"M. Amini, A. Sinclair, T. Coyle","doi":"10.1109/ULTSYM.2014.0237","DOIUrl":null,"url":null,"abstract":"In this study, porous ceramics are introduced as a backing element suitable for high temperature transducers. Acoustic impedance and attenuation can be regulated through control of the porosity and pore size, using scattering from micropores as the attenuation mechanism. Porosity is induced by mixing the ceramic powder with polyethylene particles. The polymer component burns during the sintering process and leaves behind spherical voids. Porosity and pore size are controlled through the polymer-to-ceramic weight ratio and poltyethylene particle size, respectively. In this manner, a porous mullite material is designed and manufactured to act as the binding agent for a gallium phosphate (GaPO4) piezocrystal; this yields our goal of a wide-band signal with center frequency of 2.8 MHz and operating temperature up to 700 - 800 °C. The design and fabrication process can be employed in manufacturing backing elements for a variety of transducers with specified center frequency and signal bandwidth.","PeriodicalId":153901,"journal":{"name":"2014 IEEE International Ultrasonics Symposium","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Ultrasonics Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ULTSYM.2014.0237","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this study, porous ceramics are introduced as a backing element suitable for high temperature transducers. Acoustic impedance and attenuation can be regulated through control of the porosity and pore size, using scattering from micropores as the attenuation mechanism. Porosity is induced by mixing the ceramic powder with polyethylene particles. The polymer component burns during the sintering process and leaves behind spherical voids. Porosity and pore size are controlled through the polymer-to-ceramic weight ratio and poltyethylene particle size, respectively. In this manner, a porous mullite material is designed and manufactured to act as the binding agent for a gallium phosphate (GaPO4) piezocrystal; this yields our goal of a wide-band signal with center frequency of 2.8 MHz and operating temperature up to 700 - 800 °C. The design and fabrication process can be employed in manufacturing backing elements for a variety of transducers with specified center frequency and signal bandwidth.
多孔陶瓷高温传感器衬底元件的研制
在本研究中,多孔陶瓷作为一种适用于高温传感器的衬底元件被引入。利用微孔散射作为衰减机制,通过控制孔隙度和孔径来调节声阻抗和声衰减。多孔性是由陶瓷粉末与聚乙烯颗粒混合引起的。聚合物成分在烧结过程中燃烧并留下球形空隙。孔隙率和孔径分别通过聚合物与陶瓷的重量比和聚乙烯粒径来控制。以这种方式,设计和制造多孔莫来石材料作为磷酸镓(GaPO4)压电晶体的结合剂;这产生了我们的目标,中心频率为2.8 MHz,工作温度高达700 - 800°C的宽带信号。该设计和制造工艺可用于制造具有特定中心频率和信号带宽的各种换能器的支承元件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信