Transformed rank-1 lattices for high-dimensional approximation

Robert Nasdala, D. Potts
{"title":"Transformed rank-1 lattices for high-dimensional approximation","authors":"Robert Nasdala, D. Potts","doi":"10.1553/etna_vol53s239","DOIUrl":null,"url":null,"abstract":"This paper describes an extension of Fourier approximation methods for multivariate functions defined on the torus $\\mathbb{T}^d$ to functions in a weighted Hilbert space $L_{2}(\\mathbb{R}^d, \\omega)$ via a multivariate change of variables $\\psi:\\left(-\\frac{1}{2},\\frac{1}{2}\\right)^d\\to\\mathbb{R}^d$. We establish sufficient conditions on $\\psi$ and $\\omega$ such that the composition of a function in such a weighted Hilbert space with $\\psi$ yields a function in the Sobolev space $H_{\\mathrm{mix}}^{m}(\\mathbb{T}^d)$ of functions on the torus with mixed smoothness of natural order $m \\in \\mathbb{N}_{0}$. In this approach we adapt algorithms for the evaluation and reconstruction of multivariate trigonometric polynomials on the torus $\\mathbb{T}^d$ based on single and multiple reconstructing rank-$1$ lattices. Since in applications it may be difficult to choose a related function space, we make use of dimension incremental construction methods for sparse frequency sets. Various numerical tests confirm obtained theoretical results for the transformed methods.","PeriodicalId":282695,"journal":{"name":"ETNA - Electronic Transactions on Numerical Analysis","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ETNA - Electronic Transactions on Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1553/etna_vol53s239","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

This paper describes an extension of Fourier approximation methods for multivariate functions defined on the torus $\mathbb{T}^d$ to functions in a weighted Hilbert space $L_{2}(\mathbb{R}^d, \omega)$ via a multivariate change of variables $\psi:\left(-\frac{1}{2},\frac{1}{2}\right)^d\to\mathbb{R}^d$. We establish sufficient conditions on $\psi$ and $\omega$ such that the composition of a function in such a weighted Hilbert space with $\psi$ yields a function in the Sobolev space $H_{\mathrm{mix}}^{m}(\mathbb{T}^d)$ of functions on the torus with mixed smoothness of natural order $m \in \mathbb{N}_{0}$. In this approach we adapt algorithms for the evaluation and reconstruction of multivariate trigonometric polynomials on the torus $\mathbb{T}^d$ based on single and multiple reconstructing rank-$1$ lattices. Since in applications it may be difficult to choose a related function space, we make use of dimension incremental construction methods for sparse frequency sets. Various numerical tests confirm obtained theoretical results for the transformed methods.
变换秩1格用于高维近似
本文描述了环面上多变量函数的傅里叶近似方法的一种推广 $\mathbb{T}^d$ 到加权希尔伯特空间中的函数 $L_{2}(\mathbb{R}^d, \omega)$ 通过多元变量变换 $\psi:\left(-\frac{1}{2},\frac{1}{2}\right)^d\to\mathbb{R}^d$. 我们建立充分条件 $\psi$ 和 $\omega$ 使得一个函数在这样一个加权希尔伯特空间中的复合 $\psi$ 得到Sobolev空间中的一个函数 $H_{\mathrm{mix}}^{m}(\mathbb{T}^d)$ 具有自然秩序的混合平滑环面上的函数 $m \in \mathbb{N}_{0}$. 在这种方法中,我们采用了环面上多元三角多项式的求值和重建算法 $\mathbb{T}^d$ 基于单次和多次重构秩-$1$ 格子。由于在应用中可能难以选择相关的函数空间,我们对稀疏频率集采用了维数增量构造方法。各种数值试验验证了所得到的理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信