Effcient and Effective Automated Digital Hair Removal from Dermoscopy Images

J. Koehoorn, A. Sobiecki, P. E. Rauber, A. Jalba, A. Telea
{"title":"Effcient and Effective Automated Digital Hair Removal from Dermoscopy Images","authors":"J. Koehoorn, A. Sobiecki, P. E. Rauber, A. Jalba, A. Telea","doi":"10.1515/mathm-2016-0001","DOIUrl":null,"url":null,"abstract":"Abstract We propose a method for digital hair removal from dermoscopic images, based on a threshold-set model. For every threshold, we adapt a recent gap-detection algorithm to find hairs, and merge results in a single mask image.We find hairs in this mask by combining morphological filters and medial descriptors.We derive robust parameter values for our method from over 300 skin images.We detail a GPU implementation of our method and show how it compares favorably with five existing hair removal methods, in terms of removing both long and stubble hair of various colors, contrasts, and curvature. We also discuss qualitative and quantitative validations of the produced hair-free images, and show how our method effectively addresses the task of automatic skin-tumor segmentation for hair-occluded images.","PeriodicalId":244328,"journal":{"name":"Mathematical Morphology - Theory and Applications","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Morphology - Theory and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/mathm-2016-0001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

Abstract We propose a method for digital hair removal from dermoscopic images, based on a threshold-set model. For every threshold, we adapt a recent gap-detection algorithm to find hairs, and merge results in a single mask image.We find hairs in this mask by combining morphological filters and medial descriptors.We derive robust parameter values for our method from over 300 skin images.We detail a GPU implementation of our method and show how it compares favorably with five existing hair removal methods, in terms of removing both long and stubble hair of various colors, contrasts, and curvature. We also discuss qualitative and quantitative validations of the produced hair-free images, and show how our method effectively addresses the task of automatic skin-tumor segmentation for hair-occluded images.
高效和有效的自动数字脱毛从皮肤镜图像
摘要:我们提出了一种基于阈值集模型的皮肤镜图像数字脱毛方法。对于每个阈值,我们采用最新的间隙检测算法来寻找毛发,并将结果合并到单个掩模图像中。我们通过结合形态学过滤器和内侧描述符在这个面具中找到毛发。我们从300多张皮肤图像中获得了我们方法的鲁棒参数值。我们详细介绍了我们的方法的GPU实现,并展示了它如何与五种现有的脱毛方法进行比较,在去除各种颜色,对比度和曲率的长茬头发方面。我们还讨论了产生的无毛发图像的定性和定量验证,并展示了我们的方法如何有效地解决毛发遮挡图像的皮肤肿瘤自动分割任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信