Quantum certificate complexity

S. Aaronson
{"title":"Quantum certificate complexity","authors":"S. Aaronson","doi":"10.1109/CCC.2003.1214418","DOIUrl":null,"url":null,"abstract":"Given a Boolean function f, we study two natural generalizations of the certificate complexity C(f): the randomized certificate complexity RC(f) and the quantum certificate complexity QC(f). Using Ambainis' adversary method, we exactly characterize QC(f) as the square root of RC(f). We then use this result to prove the new relation R/sub 0/(f)=O(Q/sub 2/(f)/sup 2/Q/sub 0/(f)log n) for total f, where R/sub 0/, Q/sub 2/, and Q/sub 0/ are zero-error randomized, bounded-error quantum, and zero-error quantum query complexities respectively. Finally we give asymptotic gaps between the measures, including a total f for which C(f) is superquadratic in QC(f), and a symmetric partial f for which QC(f)=O(1) yet Q/sub 2/(f)=/spl Omega/(n/log n).","PeriodicalId":286846,"journal":{"name":"18th IEEE Annual Conference on Computational Complexity, 2003. Proceedings.","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"48","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"18th IEEE Annual Conference on Computational Complexity, 2003. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCC.2003.1214418","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 48

Abstract

Given a Boolean function f, we study two natural generalizations of the certificate complexity C(f): the randomized certificate complexity RC(f) and the quantum certificate complexity QC(f). Using Ambainis' adversary method, we exactly characterize QC(f) as the square root of RC(f). We then use this result to prove the new relation R/sub 0/(f)=O(Q/sub 2/(f)/sup 2/Q/sub 0/(f)log n) for total f, where R/sub 0/, Q/sub 2/, and Q/sub 0/ are zero-error randomized, bounded-error quantum, and zero-error quantum query complexities respectively. Finally we give asymptotic gaps between the measures, including a total f for which C(f) is superquadratic in QC(f), and a symmetric partial f for which QC(f)=O(1) yet Q/sub 2/(f)=/spl Omega/(n/log n).
量子证书复杂度
给定一个布尔函数f,我们研究了证书复杂度C(f)的两种自然概括:随机证书复杂度RC(f)和量子证书复杂度QC(f)。使用Ambainis的对抗性方法,我们准确地将QC(f)表征为RC(f)的平方根。然后我们用这个结果证明了总的f的新关系R/sub 0/(f)=O(Q/sub 2/(f)/sup 2/Q/sub 0/(f)log n),其中R/sub 0/、Q/sub 2/和Q/sub 0/分别是零错误随机化、有界错误量子和零错误量子查询复杂度。最后,我们给出了测度之间的渐近间隙,包括C(f)在QC(f)中是超二次的总f,以及QC(f)=O(1)但Q/下标2/(f)=/spl /(n/log n)的对称偏f。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信