Fracture of Void-Embedded High-Entropy-Alloy Films: A Comprehensive Atomistic Study

Yi Cui, Zengtao Chen, Y. Ju
{"title":"Fracture of Void-Embedded High-Entropy-Alloy Films: A Comprehensive Atomistic Study","authors":"Yi Cui, Zengtao Chen, Y. Ju","doi":"10.2139/ssrn.3580465","DOIUrl":null,"url":null,"abstract":"Abstract Comprehensive molecular dynamics (MD) simulations are performed to study the stress response and deformation mechanism in void-embedded, single-crystal and polycrystalline, high-entropy-alloy (HEA) films under uniaxial tensile loading. Our results reveal that certain void-embedded HEA films can be, by far, superior to pure Ni in terms of tensile ductility and the resistance to crack propagation. The fracture strain of the 10%Co CoCrFeMnNi and the equiatomic CoFeMnNi, respectively, doubles or triples that of the equiatomic CoCrFeMnNi, which still doubles that of pure Ni. Regarding the deformation mechanism, high tensile ductility of HEAs can be attributed to the formation of partial dislocations, nanotwinning and the impediment of the otherwise glissile dislocations due to the lattice distortion effect. The ultimate tensile strength of HEA film shows better resistance against stress deterioration due to elliptical voids. The stress response of the void-embedded, polycrystalline Ni films obeys the reverse Hall–Petch effect, while the void-embedded, polycrystalline HEA films do not.","PeriodicalId":360688,"journal":{"name":"EngRN: Electrochemical Energy Engineering (EngRN) (Topic)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EngRN: Electrochemical Energy Engineering (EngRN) (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3580465","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Abstract Comprehensive molecular dynamics (MD) simulations are performed to study the stress response and deformation mechanism in void-embedded, single-crystal and polycrystalline, high-entropy-alloy (HEA) films under uniaxial tensile loading. Our results reveal that certain void-embedded HEA films can be, by far, superior to pure Ni in terms of tensile ductility and the resistance to crack propagation. The fracture strain of the 10%Co CoCrFeMnNi and the equiatomic CoFeMnNi, respectively, doubles or triples that of the equiatomic CoCrFeMnNi, which still doubles that of pure Ni. Regarding the deformation mechanism, high tensile ductility of HEAs can be attributed to the formation of partial dislocations, nanotwinning and the impediment of the otherwise glissile dislocations due to the lattice distortion effect. The ultimate tensile strength of HEA film shows better resistance against stress deterioration due to elliptical voids. The stress response of the void-embedded, polycrystalline Ni films obeys the reverse Hall–Petch effect, while the void-embedded, polycrystalline HEA films do not.
空穴嵌入高熵合金薄膜断裂的原子力学研究
摘要采用综合分子动力学(MD)模拟方法研究了单轴拉伸载荷作用下含孔洞的高熵合金(HEA)单晶和多晶薄膜的应力响应和变形机理。我们的研究结果表明,到目前为止,在拉伸延展性和抗裂纹扩展方面,某些嵌入孔洞的HEA薄膜可以优于纯Ni。10%Co CoCrFeMnNi和等原子CoFeMnNi的断裂应变分别是等原子CoCrFeMnNi的两倍或三倍,仍然是纯Ni的两倍。在形变机制方面,HEAs的高拉伸延展性可归因于部分位错、纳米孪晶的形成以及晶格畸变效应对其他可滑位错的阻碍。HEA薄膜的极限抗拉强度表现出较好的抗椭圆空洞应力劣化能力。多孔嵌套的多晶Ni薄膜的应力响应服从反向Hall-Petch效应,而多孔嵌套的多晶HEA薄膜则不服从。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信