Towards Trustworthy Perception Information Sharing on Connected and Autonomous Vehicles

Jingda Guo, Qing Yang, Song Fu, R. Boyles, Shavon Turner, Kenzie Clarke
{"title":"Towards Trustworthy Perception Information Sharing on Connected and Autonomous Vehicles","authors":"Jingda Guo, Qing Yang, Song Fu, R. Boyles, Shavon Turner, Kenzie Clarke","doi":"10.1109/MetroCAD48866.2020.00021","DOIUrl":null,"url":null,"abstract":"Sharing perception data among autonomous vehicles is extremely useful to extending the line of sight and field of view of autonomous vehicles, which otherwise suffer from blind spots and occlusions. However, the security of using data from a random other car in making driving decisions is an issue. Without the ability of assessing the trustworthiness of received information, it will be too risky to use them for any purposes. On the other hand, when information is exchanged between vehicles, it provides a golden opportunity to quantitatively study a vehicle’s trust. In this paper, we propose a trustworthy information sharing framework for connected and autonomous vehicles in which vehicles measure each other’s trust using the Dirichlet-Categorical (DC) model. To increase a vehicle’s capability of assessing received data’s trust, we leverage the Enhanced Super-Resolution Generative Adversarial Networks (ESRGAN) model to increase the resolution of blurry images. As a result, a vehicle is able to evaluate the trustworthiness of received data that contain distant objects. Based on the KITTI dataset, we evaluate the proposed solution and discover that vehicle’s trust assessment capability can be increased by 11 − 37%, using the ESRGAN model.","PeriodicalId":117440,"journal":{"name":"2020 International Conference on Connected and Autonomous Driving (MetroCAD)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Connected and Autonomous Driving (MetroCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MetroCAD48866.2020.00021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Sharing perception data among autonomous vehicles is extremely useful to extending the line of sight and field of view of autonomous vehicles, which otherwise suffer from blind spots and occlusions. However, the security of using data from a random other car in making driving decisions is an issue. Without the ability of assessing the trustworthiness of received information, it will be too risky to use them for any purposes. On the other hand, when information is exchanged between vehicles, it provides a golden opportunity to quantitatively study a vehicle’s trust. In this paper, we propose a trustworthy information sharing framework for connected and autonomous vehicles in which vehicles measure each other’s trust using the Dirichlet-Categorical (DC) model. To increase a vehicle’s capability of assessing received data’s trust, we leverage the Enhanced Super-Resolution Generative Adversarial Networks (ESRGAN) model to increase the resolution of blurry images. As a result, a vehicle is able to evaluate the trustworthiness of received data that contain distant objects. Based on the KITTI dataset, we evaluate the proposed solution and discover that vehicle’s trust assessment capability can be increased by 11 − 37%, using the ESRGAN model.
实现联网和自动驾驶汽车的可信赖感知信息共享
在自动驾驶汽车之间共享感知数据对于延长自动驾驶汽车的视线和视野非常有用,否则会受到盲点和闭塞的影响。然而,使用随机其他车辆的数据来做出驾驶决策的安全性是一个问题。如果没有能力评估接收到的信息的可信度,将它们用于任何目的都将是太冒险的。另一方面,当车辆之间交换信息时,它提供了一个定量研究车辆信任的绝佳机会。在本文中,我们提出了一个可信赖的互联和自动驾驶汽车信息共享框架,其中车辆使用Dirichlet-Categorical (DC)模型来衡量彼此的信任。为了提高车辆评估接收数据信任的能力,我们利用增强型超分辨率生成对抗网络(ESRGAN)模型来提高模糊图像的分辨率。因此,车辆能够评估接收到的包含远处物体的数据的可信度。基于KITTI数据集,我们对提出的解决方案进行了评估,发现使用ESRGAN模型,车辆的信任评估能力可以提高11 - 37%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信