A Benchmark of Four Methods for Generating 360° Saliency Maps from Eye Tracking Data

Brendan David-John, Pallavi Raiturkar, O. Meur, Eakta Jain
{"title":"A Benchmark of Four Methods for Generating 360° Saliency Maps from Eye Tracking Data","authors":"Brendan David-John, Pallavi Raiturkar, O. Meur, Eakta Jain","doi":"10.1109/aivr.2018.00028","DOIUrl":null,"url":null,"abstract":"Modeling and visualization of user attention in Virtual Reality is important for many applications, such as gaze prediction, robotics, retargeting, video compression, and rendering. Several methods have been proposed to model eye tracking data as saliency maps. We benchmark the performance of four such methods for 360° images. We provide a comprehensive analysis and implementations of these methods to assist researchers and practitioners. Finally, we make recommendations based on our benchmark analyses and the ease of implementation.","PeriodicalId":371868,"journal":{"name":"2018 IEEE International Conference on Artificial Intelligence and Virtual Reality (AIVR)","volume":"111 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Artificial Intelligence and Virtual Reality (AIVR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/aivr.2018.00028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

Modeling and visualization of user attention in Virtual Reality is important for many applications, such as gaze prediction, robotics, retargeting, video compression, and rendering. Several methods have been proposed to model eye tracking data as saliency maps. We benchmark the performance of four such methods for 360° images. We provide a comprehensive analysis and implementations of these methods to assist researchers and practitioners. Finally, we make recommendations based on our benchmark analyses and the ease of implementation.
眼动追踪数据生成360°显著性图的四种方法的比较
虚拟现实中用户注意力的建模和可视化对于许多应用都很重要,例如凝视预测、机器人、重定向、视频压缩和渲染。已经提出了几种将眼动追踪数据建模为显著性图的方法。我们对这四种方法在360°图像上的性能进行了基准测试。我们提供了这些方法的全面分析和实现,以帮助研究人员和从业者。最后,我们根据基准分析和实现的容易程度提出建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信