Handlers for Non-Monadic Computations

Ruben P. Pieters, T. Schrijvers, Exequiel Rivas
{"title":"Handlers for Non-Monadic Computations","authors":"Ruben P. Pieters, T. Schrijvers, Exequiel Rivas","doi":"10.1145/3205368.3205372","DOIUrl":null,"url":null,"abstract":"Algebraic effects and handlers are a convenient method for structuring monadic effects with primitive effectful operations and separating the syntax from the interpretation of these operations. However, the scope of conventional handlers are somewhat limited as not all side effects are monadic in nature. This paper generalizes the notion of algebraic effects and handlers from monads to generalized monoids, which notably covers applicative functors and arrows. For this purpose we switch the category theoretical basis from free algebras to free monoids. In addition, we show how lax monoidal functors enable the reuse of handlers and programs across different computation classes, for example handling applicative computations with monadic handlers.","PeriodicalId":180839,"journal":{"name":"Proceedings of the 29th Symposium on the Implementation and Application of Functional Programming Languages","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 29th Symposium on the Implementation and Application of Functional Programming Languages","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3205368.3205372","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Algebraic effects and handlers are a convenient method for structuring monadic effects with primitive effectful operations and separating the syntax from the interpretation of these operations. However, the scope of conventional handlers are somewhat limited as not all side effects are monadic in nature. This paper generalizes the notion of algebraic effects and handlers from monads to generalized monoids, which notably covers applicative functors and arrows. For this purpose we switch the category theoretical basis from free algebras to free monoids. In addition, we show how lax monoidal functors enable the reuse of handlers and programs across different computation classes, for example handling applicative computations with monadic handlers.
非一元计算的处理程序
代数效果和处理程序是一种方便的方法,用于构造具有基本有效操作的一元效果,并将语法与这些操作的解释分离开来。然而,传统处理程序的范围有些有限,因为并非所有副作用都是一元性质的。本文将代数效应和处理程序的概念从单群推广到广义单群,主要包括应用函子和箭头。为此,我们将范畴理论基础从自由代数转换为自由模群。此外,我们还展示了松散单函数如何支持跨不同计算类重用处理程序和程序,例如使用单函数处理程序处理应用程序计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信