Blind identification of MIMO Space-Time Block Codes Based on Convolutional Neural Network

Conglin Pan, Si Chen, Huijie Zhu, Wei Wu, Jiachuan Qian, Lijun Wang
{"title":"Blind identification of MIMO Space-Time Block Codes Based on Convolutional Neural Network","authors":"Conglin Pan, Si Chen, Huijie Zhu, Wei Wu, Jiachuan Qian, Lijun Wang","doi":"10.1145/3507971.3508009","DOIUrl":null,"url":null,"abstract":"Aiming at the blind identification of space-time block codes (STBC) in multiple input multiple output (MIMO) system, this paper proposes a new convolutional neural network (CNN-N) to realize the blind identification. Compared to traditional algorithms using statistical features of received signal, CNN-N can reduce the computation with a higher correct identification rate. Consist of multiple layers with special functions, CNN-N has good generalization ability in complex MIMO channels. The network in this paper can recognize 6 STBC codes include spatial multiplexing signal (SM) and some OSTBC codes. The simulation result shows that this new convolutional neural network can finish STBC identification with a high correct rate even in low SNR by consuming moderate amounts of time.","PeriodicalId":439757,"journal":{"name":"Proceedings of the 7th International Conference on Communication and Information Processing","volume":"104 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 7th International Conference on Communication and Information Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3507971.3508009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Aiming at the blind identification of space-time block codes (STBC) in multiple input multiple output (MIMO) system, this paper proposes a new convolutional neural network (CNN-N) to realize the blind identification. Compared to traditional algorithms using statistical features of received signal, CNN-N can reduce the computation with a higher correct identification rate. Consist of multiple layers with special functions, CNN-N has good generalization ability in complex MIMO channels. The network in this paper can recognize 6 STBC codes include spatial multiplexing signal (SM) and some OSTBC codes. The simulation result shows that this new convolutional neural network can finish STBC identification with a high correct rate even in low SNR by consuming moderate amounts of time.
基于卷积神经网络的MIMO空时分组码盲识别
针对多输入多输出(MIMO)系统中空时分组码(STBC)的盲识别问题,提出了一种新的卷积神经网络(CNN-N)来实现盲识别。与传统的利用接收信号统计特征的算法相比,CNN-N可以减少计算量,同时具有更高的正确识别率。CNN-N由多个具有特殊功能的层组成,在复杂MIMO信道中具有良好的泛化能力。本文所设计的网络可以识别6种STBC码,包括空间复用信号(SM)和部分OSTBC码。仿真结果表明,该卷积神经网络在较低信噪比的情况下也能以较高的正确率完成STBC的识别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信