Using Analytical Models to Bootstrap Machine Learning Performance Predictors

Diego Didona, P. Romano
{"title":"Using Analytical Models to Bootstrap Machine Learning Performance Predictors","authors":"Diego Didona, P. Romano","doi":"10.1109/ICPADS.2015.58","DOIUrl":null,"url":null,"abstract":"Performance modeling is a crucial technique to enable the vision of elastic computing in cloud environments. Conventional approaches to performance modeling rely on two antithetic methodologies: white box modeling, which exploits knowledge on system's internals and capture its dynamics using analytical approaches, and black box techniques, which infer relations among the input and output variables of a system based on the evidences gathered during an initial training phase. In this paper we investigate a technique, which we name Bootstrapping, which aims at reconciling these two methodologies and at compensating the cons of the one with the pros of the other. We analyze the design space of this gray box modeling technique, and identify a number of algorithmic and parametric trade-offs which we evaluate via two realistic case studies, a Key-Value Store and a Total Order Broadcast service.","PeriodicalId":231517,"journal":{"name":"2015 IEEE 21st International Conference on Parallel and Distributed Systems (ICPADS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 21st International Conference on Parallel and Distributed Systems (ICPADS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPADS.2015.58","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Performance modeling is a crucial technique to enable the vision of elastic computing in cloud environments. Conventional approaches to performance modeling rely on two antithetic methodologies: white box modeling, which exploits knowledge on system's internals and capture its dynamics using analytical approaches, and black box techniques, which infer relations among the input and output variables of a system based on the evidences gathered during an initial training phase. In this paper we investigate a technique, which we name Bootstrapping, which aims at reconciling these two methodologies and at compensating the cons of the one with the pros of the other. We analyze the design space of this gray box modeling technique, and identify a number of algorithmic and parametric trade-offs which we evaluate via two realistic case studies, a Key-Value Store and a Total Order Broadcast service.
使用分析模型来引导机器学习性能预测器
性能建模是在云环境中实现弹性计算愿景的关键技术。传统的性能建模方法依赖于两种对立的方法:白盒建模,它利用系统内部的知识并使用分析方法捕获其动态,以及黑盒技术,它根据在初始训练阶段收集的证据推断系统输入和输出变量之间的关系。在本文中,我们研究了一种技术,我们称之为引导,旨在协调这两种方法,并用另一种方法的优点补偿一种方法的缺点。我们分析了这种灰盒建模技术的设计空间,并确定了一些算法和参数权衡,我们通过两个现实的案例研究来评估,一个键值存储和一个总订单广播服务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信