Safe Landing Zones Detection for UAVs Using Deep Regression

Sakineh Abdollahzadeh, Pier-Luc Proulx, M. S. Allili, J. Lapointe
{"title":"Safe Landing Zones Detection for UAVs Using Deep Regression","authors":"Sakineh Abdollahzadeh, Pier-Luc Proulx, M. S. Allili, J. Lapointe","doi":"10.1109/CRV55824.2022.00035","DOIUrl":null,"url":null,"abstract":"Finding safe landing zones (SLZ) in urban areas and natural scenes is one of the many challenges that must be overcome in automating Unmanned Aerial Vehicles (UAV) navigation. Using passive vision sensors to achieve this objective is a very promising avenue due to their low cost and the potential they provide for performing simultaneous terrain analysis and 3D reconstruction. In this paper, we propose using a deep learning approach on UAV imagery to assess the SLZ. The model is built on a semantic segmentation architecture whereby thematic classes of the terrain are mapped into safety scores for UAV landing. Contrary to past methods, which use hard classification into safe/unsafe landing zones, our approach provides a continuous safety map that is more practical for an emergency landing. Experiments on public datasets have shown promising results.","PeriodicalId":131142,"journal":{"name":"2022 19th Conference on Robots and Vision (CRV)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 19th Conference on Robots and Vision (CRV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CRV55824.2022.00035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Finding safe landing zones (SLZ) in urban areas and natural scenes is one of the many challenges that must be overcome in automating Unmanned Aerial Vehicles (UAV) navigation. Using passive vision sensors to achieve this objective is a very promising avenue due to their low cost and the potential they provide for performing simultaneous terrain analysis and 3D reconstruction. In this paper, we propose using a deep learning approach on UAV imagery to assess the SLZ. The model is built on a semantic segmentation architecture whereby thematic classes of the terrain are mapped into safety scores for UAV landing. Contrary to past methods, which use hard classification into safe/unsafe landing zones, our approach provides a continuous safety map that is more practical for an emergency landing. Experiments on public datasets have shown promising results.
基于深度回归的无人机安全着陆区检测
在城市地区和自然场景中寻找安全着陆区(SLZ)是无人驾驶飞行器(UAV)自动化导航必须克服的众多挑战之一。使用被动视觉传感器来实现这一目标是一个非常有前途的途径,因为它们成本低,并且具有同时进行地形分析和3D重建的潜力。在本文中,我们建议使用无人机图像的深度学习方法来评估SLZ。该模型建立在语义分割架构上,将地形的主题类映射为无人机着陆的安全分数。与过去使用安全/不安全着陆区域的硬分类方法相反,我们的方法提供了一个连续的安全地图,对于紧急着陆更实用。在公共数据集上的实验显示出了令人鼓舞的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信