{"title":"Generalized bilinear connection on the space of centered planes","authors":"O. Belova","doi":"10.5922/0321-4796-2022-53-3","DOIUrl":null,"url":null,"abstract":"We continue to study the space of centered planes in projective space . In this paper, we use E. Cartan's method of external forms and the group-theoretical method of G. F. Laptev to study the space of centered planes of the same dimension. These methods are successfully applied in physics. In a generalized bundle, a bilinear connection associated with a space is given. The connection object contains two simplest subtensors and subquasi-tensors (four simplest and three simple subquasi-tensors). The object field of this connection defines the objects of torsion, curvature-torsion, and curvature. The curvature tensor contains six simplest and four simple subtensors, and curvature-torsion tensor contains three simplest and two simple subtensors. The canonical case of a generalized bilinear connection is considered.","PeriodicalId":114406,"journal":{"name":"Differential Geometry of Manifolds of Figures","volume":"119 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Geometry of Manifolds of Figures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5922/0321-4796-2022-53-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We continue to study the space of centered planes in projective space . In this paper, we use E. Cartan's method of external forms and the group-theoretical method of G. F. Laptev to study the space of centered planes of the same dimension. These methods are successfully applied in physics. In a generalized bundle, a bilinear connection associated with a space is given. The connection object contains two simplest subtensors and subquasi-tensors (four simplest and three simple subquasi-tensors). The object field of this connection defines the objects of torsion, curvature-torsion, and curvature. The curvature tensor contains six simplest and four simple subtensors, and curvature-torsion tensor contains three simplest and two simple subtensors. The canonical case of a generalized bilinear connection is considered.