Tool Support for Parametric Analysis of Large Software Simulation Systems

J. Schumann, K. Gundy-Burlet, C. Pasareanu, T. Menzies, Tony Barrett
{"title":"Tool Support for Parametric Analysis of Large Software Simulation Systems","authors":"J. Schumann, K. Gundy-Burlet, C. Pasareanu, T. Menzies, Tony Barrett","doi":"10.1109/ASE.2008.89","DOIUrl":null,"url":null,"abstract":"The analysis of large and complex parameterized software systems, e.g., systems simulation in aerospace, is very complicated and time-consuming due to the large parameter space, and the complex, highly coupled nonlinear nature of the different system components. Thus, such systems are generally validated only in regions local to anticipated operating points rather than through characterization of the entire feasible operational envelope of the system. We have addressed the factors deterring such an analysis with a tool to support envelope assessment: we utilize a combination of advanced Monte Carlo generation with n-factor combinatorial parameter variations to limit the number of cases, but still explore important interactions in the parameter space in a systematic fashion. Additional test-cases, automatically generated from models (e.g., UML, Simulink, Stateflow) improve the coverage. The distributed test runs of the software system produce vast amounts of data, making manual analysis impossible. Our tool automatically analyzes the generated data through a combination of unsupervised Bayesian clustering techniques (AutoBayes) and supervised learning of critical parameter ranges using the treatment learner TAR3. The tool has been developed around the Trick simulation environment, which is widely used within NASA. We will present this tool with a GN&C (Guidance, Navigation and Control) simulation of a small satellite system.","PeriodicalId":184403,"journal":{"name":"2008 23rd IEEE/ACM International Conference on Automated Software Engineering","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 23rd IEEE/ACM International Conference on Automated Software Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASE.2008.89","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

The analysis of large and complex parameterized software systems, e.g., systems simulation in aerospace, is very complicated and time-consuming due to the large parameter space, and the complex, highly coupled nonlinear nature of the different system components. Thus, such systems are generally validated only in regions local to anticipated operating points rather than through characterization of the entire feasible operational envelope of the system. We have addressed the factors deterring such an analysis with a tool to support envelope assessment: we utilize a combination of advanced Monte Carlo generation with n-factor combinatorial parameter variations to limit the number of cases, but still explore important interactions in the parameter space in a systematic fashion. Additional test-cases, automatically generated from models (e.g., UML, Simulink, Stateflow) improve the coverage. The distributed test runs of the software system produce vast amounts of data, making manual analysis impossible. Our tool automatically analyzes the generated data through a combination of unsupervised Bayesian clustering techniques (AutoBayes) and supervised learning of critical parameter ranges using the treatment learner TAR3. The tool has been developed around the Trick simulation environment, which is widely used within NASA. We will present this tool with a GN&C (Guidance, Navigation and Control) simulation of a small satellite system.
大型软件仿真系统参数分析的工具支持
大型和复杂的参数化软件系统的分析,例如航空航天系统仿真,由于参数空间大,以及不同系统组件复杂,高度耦合的非线性性质,是非常复杂和耗时的。因此,这样的系统通常只在预期操作点的局部区域进行验证,而不是通过对系统整个可行操作范围的表征进行验证。我们已经用支持包络评估的工具解决了阻碍这种分析的因素:我们利用先进的蒙特卡罗生成与n因子组合参数变化的组合来限制情况的数量,但仍然以系统的方式探索参数空间中的重要相互作用。从模型(例如UML、Simulink、Stateflow)自动生成的附加测试用例提高了覆盖率。软件系统的分布式测试运行产生大量的数据,使得手工分析变得不可能。我们的工具通过结合无监督贝叶斯聚类技术(AutoBayes)和使用处理学习器TAR3的关键参数范围的监督学习来自动分析生成的数据。该工具是围绕在NASA内部广泛使用的Trick模拟环境开发的。我们将用一个小型卫星系统的GN&C(制导、导航和控制)仿真来展示这个工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信