Time driven video summarization using GMM

Sujatha C, Ravindra Akshay, Chivate, Sayed Altaf Ganihar, U. Mudenagudi
{"title":"Time driven video summarization using GMM","authors":"Sujatha C, Ravindra Akshay, Chivate, Sayed Altaf Ganihar, U. Mudenagudi","doi":"10.1109/NCVPRIPG.2013.6776205","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a method to browse the activities present in the longer videos for the user defined time. Browsing of activities is important for variety of applications and consumes large amount of viewing time for longer videos. The aim is to generate a summary of the video by retaining salient activities in a given time. We propose a method for selection of salient activities using motion of feature points as a key parameter, where the saliency of a frame depends on total motion and specified time for summarization. The motion information in a video is modeled as a Gaussian mixture model (GMM), to estimate the key motion frames in the video. The salient frames are detected depending upon the motion strength of the keyframe and user specified time, which contributes for the summarization keeping the chronology of activities. The proposed method finds applications in summarization of surveillance videos, movies, TV serials etc. We demonstrate the proposed method on different types of videos and achieve comparable results with stroboscopic approach and also maintain the chronology with an average retention ratio of 95%.","PeriodicalId":436402,"journal":{"name":"2013 Fourth National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics (NCVPRIPG)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Fourth National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics (NCVPRIPG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NCVPRIPG.2013.6776205","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

In this paper, we propose a method to browse the activities present in the longer videos for the user defined time. Browsing of activities is important for variety of applications and consumes large amount of viewing time for longer videos. The aim is to generate a summary of the video by retaining salient activities in a given time. We propose a method for selection of salient activities using motion of feature points as a key parameter, where the saliency of a frame depends on total motion and specified time for summarization. The motion information in a video is modeled as a Gaussian mixture model (GMM), to estimate the key motion frames in the video. The salient frames are detected depending upon the motion strength of the keyframe and user specified time, which contributes for the summarization keeping the chronology of activities. The proposed method finds applications in summarization of surveillance videos, movies, TV serials etc. We demonstrate the proposed method on different types of videos and achieve comparable results with stroboscopic approach and also maintain the chronology with an average retention ratio of 95%.
使用GMM的时间驱动视频摘要
在本文中,我们提出了一种在用户定义时间内浏览较长视频中出现的活动的方法。浏览活动对于各种应用程序都很重要,而且对于较长的视频来说,浏览活动会消耗大量的观看时间。其目的是通过保留给定时间内的突出活动来生成视频摘要。我们提出了一种以特征点的运动作为关键参数来选择显著性活动的方法,其中帧的显著性取决于总运动和指定的总结时间。将视频中的运动信息建模为高斯混合模型(GMM),以估计视频中的关键运动帧。根据关键帧的运动强度和用户指定的时间来检测显著帧,这有助于总结保持活动的时间顺序。该方法适用于监控视频、电影、电视剧等的摘要。我们在不同类型的视频上演示了所提出的方法,并取得了与频闪方法相当的结果,并且保持了平均保留率为95%的时间顺序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信