Optimal marker set for motion capture of dynamical facial expressions

Clément Reverdy, S. Gibet, Caroline Larboulette
{"title":"Optimal marker set for motion capture of dynamical facial expressions","authors":"Clément Reverdy, S. Gibet, Caroline Larboulette","doi":"10.1145/2822013.2822042","DOIUrl":null,"url":null,"abstract":"We seek to determine an optimal set of markers for marker-based facial motion capture and animation control. The problem is addressed in two different ways: on the one hand, different sets of empirical markers classically used in computer animation are evaluated; on the other hand, a clustering method that automatically determines optimal marker sets is proposed and compared with the empirical marker sets. To evaluate the quality of a set of markers, we use a blendshape-based synthesis technique that learns the mapping between marker positions and blendshape weights, and we calculate the reconstruction error of various animated sequences created from the considered set of markers in comparison to ground truth data. Our results show that the clustering method outperforms the heuristic approach.","PeriodicalId":222258,"journal":{"name":"Proceedings of the 8th ACM SIGGRAPH Conference on Motion in Games","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 8th ACM SIGGRAPH Conference on Motion in Games","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2822013.2822042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

We seek to determine an optimal set of markers for marker-based facial motion capture and animation control. The problem is addressed in two different ways: on the one hand, different sets of empirical markers classically used in computer animation are evaluated; on the other hand, a clustering method that automatically determines optimal marker sets is proposed and compared with the empirical marker sets. To evaluate the quality of a set of markers, we use a blendshape-based synthesis technique that learns the mapping between marker positions and blendshape weights, and we calculate the reconstruction error of various animated sequences created from the considered set of markers in comparison to ground truth data. Our results show that the clustering method outperforms the heuristic approach.
动态面部表情动作捕捉的最优标记集
我们试图确定一组最佳的标记为基于标记的面部动作捕捉和动画控制。这个问题以两种不同的方式解决:一方面,对计算机动画中经典使用的不同经验标记集进行评估;另一方面,提出了一种自动确定最优标记集的聚类方法,并与经验标记集进行了比较。为了评估一组标记的质量,我们使用了一种基于blendshape的合成技术,该技术学习了标记位置和blendshape权重之间的映射,并且我们计算了从考虑的标记集创建的各种动画序列的重建误差,并与地面真实数据进行了比较。结果表明,聚类方法优于启发式方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信