Parameters Determination for Ill-Defined Edge Detection Using Particle Swarm Optimization

Pannawit Panwong, S. Auephanwiriyakul, N. Theera-Umpon
{"title":"Parameters Determination for Ill-Defined Edge Detection Using Particle Swarm Optimization","authors":"Pannawit Panwong, S. Auephanwiriyakul, N. Theera-Umpon","doi":"10.1109/ITC-CSCC58803.2023.10212760","DOIUrl":null,"url":null,"abstract":"Segmentation process is one of the preprocess steps in object detection. To achieve segmentation, edge detection is a possible choice. However, if there is noise in image, edge might be ill-defined. Our algorithm for ill-defined edge detection is enhanced in this paper. In particular, we utilized the particle swarm optimization (PSO) in finding optimal parameters in the algorithm, rather than using manual settings as in the original work. There are two data sets, i.e., synthetic and carpal bone data sets, used in the experiment. We found that the intersection over union (IOU) on the blind test data set of the synthetic data set is $0.9200\\pm 0.0144$. The result on the blind test carpal bone data set is $0.9228\\pm 0.0592$. For the carpal bone data set, we compare the result with that from the original algorithm. The result shows that the enhanced method performs better than the original one. However, there is still a problem in misleading edge direction because of gradient and edge map generation.","PeriodicalId":220939,"journal":{"name":"2023 International Technical Conference on Circuits/Systems, Computers, and Communications (ITC-CSCC)","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Technical Conference on Circuits/Systems, Computers, and Communications (ITC-CSCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITC-CSCC58803.2023.10212760","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Segmentation process is one of the preprocess steps in object detection. To achieve segmentation, edge detection is a possible choice. However, if there is noise in image, edge might be ill-defined. Our algorithm for ill-defined edge detection is enhanced in this paper. In particular, we utilized the particle swarm optimization (PSO) in finding optimal parameters in the algorithm, rather than using manual settings as in the original work. There are two data sets, i.e., synthetic and carpal bone data sets, used in the experiment. We found that the intersection over union (IOU) on the blind test data set of the synthetic data set is $0.9200\pm 0.0144$. The result on the blind test carpal bone data set is $0.9228\pm 0.0592$. For the carpal bone data set, we compare the result with that from the original algorithm. The result shows that the enhanced method performs better than the original one. However, there is still a problem in misleading edge direction because of gradient and edge map generation.
基于粒子群优化的模糊边缘检测参数确定
分割过程是目标检测的预处理步骤之一。为了实现分割,边缘检测是一种可能的选择。但是,如果图像中存在噪声,则可能导致边缘不清晰。本文对我们的模糊边缘检测算法进行了改进。特别是,我们在算法中使用粒子群优化(PSO)来寻找最优参数,而不是像原版那样使用手动设置。实验中使用了两个数据集,即合成骨数据集和腕骨数据集。我们发现合成数据集的盲测数据集上的交点与联合(IOU)为$0.9200\pm 0.0144$。盲测腕骨数据集的结果为0.9228美元/ pm 0.0592美元。对于腕骨数据集,我们将结果与原始算法进行了比较。结果表明,改进后的方法比原来的方法性能更好。然而,由于梯度和边缘图的生成,仍然存在边缘方向误导的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信