Lower Bounds for Non-Adaptive Shortest Path Relaxation

D. Eppstein
{"title":"Lower Bounds for Non-Adaptive Shortest Path Relaxation","authors":"D. Eppstein","doi":"10.48550/arXiv.2305.09230","DOIUrl":null,"url":null,"abstract":"We consider single-source shortest path algorithms that perform a sequence of relaxation steps whose ordering depends only on the input graph structure and not on its weights or the results of prior steps. Each step examines one edge of the graph, and replaces the tentative distance to the endpoint of the edge by its minimum with the tentative distance to the start of the edge, plus the edge length. As we prove, among such algorithms, the Bellman-Ford algorithm has optimal complexity for dense graphs and near-optimal complexity for sparse graphs, as a function of the number of edges and vertices in the given graph. Our analysis holds both for deterministic algorithms and for randomized algorithms that find shortest path distances with high probability.","PeriodicalId":380945,"journal":{"name":"Workshop on Algorithms and Data Structures","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Algorithms and Data Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2305.09230","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We consider single-source shortest path algorithms that perform a sequence of relaxation steps whose ordering depends only on the input graph structure and not on its weights or the results of prior steps. Each step examines one edge of the graph, and replaces the tentative distance to the endpoint of the edge by its minimum with the tentative distance to the start of the edge, plus the edge length. As we prove, among such algorithms, the Bellman-Ford algorithm has optimal complexity for dense graphs and near-optimal complexity for sparse graphs, as a function of the number of edges and vertices in the given graph. Our analysis holds both for deterministic algorithms and for randomized algorithms that find shortest path distances with high probability.
我们考虑单源最短路径算法,它执行一系列松弛步骤,其顺序仅取决于输入图结构,而不取决于其权重或前一步的结果。每一步检查图的一条边,并用到边的起始点的暂定距离加上边的长度替换到边端点的暂定距离的最小值。我们证明,在这些算法中,Bellman-Ford算法对于密集图具有最优的复杂度,对于稀疏图具有接近最优的复杂度,作为给定图中边和顶点数量的函数。我们的分析既适用于确定性算法,也适用于以高概率找到最短路径距离的随机算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信