{"title":"Incomplete Data Analysis","authors":"Bo-Wei Chen, Jia-Ching Wang","doi":"10.5772/INTECHOPEN.94068","DOIUrl":null,"url":null,"abstract":"This chapter discusses missing-value problems from the perspective of machine learning. Missing values frequently occur during data acquisition. When a dataset contains missing values, nonvectorial data are generated. This subsequently causes a serious problem in pattern recognition models because nonvectorial data need further data wrangling before models are built. In view of such, this chapter reviews the methodologies of related works and examines their empirical effectiveness. At present, a great deal of effort has been devoted in this field, and those works can be roughly divided into two types — Multiple imputation and single imputation, where the latter can be further classified into subcategories. They include deletion, fixed-value replacement, K-Nearest Neighbors, regression, tree-based algorithms, and latent component-based approaches. In this chapter, those approaches are introduced and commented. Finally, numerical examples are provided along with recommendations on future development.","PeriodicalId":169871,"journal":{"name":"Applications of Pattern Recognition","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applications of Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.94068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This chapter discusses missing-value problems from the perspective of machine learning. Missing values frequently occur during data acquisition. When a dataset contains missing values, nonvectorial data are generated. This subsequently causes a serious problem in pattern recognition models because nonvectorial data need further data wrangling before models are built. In view of such, this chapter reviews the methodologies of related works and examines their empirical effectiveness. At present, a great deal of effort has been devoted in this field, and those works can be roughly divided into two types — Multiple imputation and single imputation, where the latter can be further classified into subcategories. They include deletion, fixed-value replacement, K-Nearest Neighbors, regression, tree-based algorithms, and latent component-based approaches. In this chapter, those approaches are introduced and commented. Finally, numerical examples are provided along with recommendations on future development.