Structured Prediction Networks through Latent Cost Learning

R. Milidiú, R. Rocha
{"title":"Structured Prediction Networks through Latent Cost Learning","authors":"R. Milidiú, R. Rocha","doi":"10.1109/SSCI.2018.8628625","DOIUrl":null,"url":null,"abstract":"Structured prediction provides a flexible modeling framework to deal with several relevant problems. Sequences, Trees, Disjoint Intervals and Matching are some useful examples of the type of structures we would like to predict. An elegant learning scheme for this prediction setting is the Structured Perceptron algorithm, which is sure to converge under some linear separability conditions. The framework integrates a very simple Structured layer on top of a latent costs network. Our key contribution is a novel loss function that incorporates structural information and simplifies learning. The effectiveness of this framework is illustrated with sequence prediction problems. We explore LSTM neural network architectures to model the latent costs layer, since our experiments concern NLP tasks. We perform basic experiments with Chunking in English. The SPN predictor outperforms its CRF equivalent. Our initial findings strongly indicate that SPN is a versatile framework with a powerful learning strategy.","PeriodicalId":235735,"journal":{"name":"2018 IEEE Symposium Series on Computational Intelligence (SSCI)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Symposium Series on Computational Intelligence (SSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSCI.2018.8628625","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Structured prediction provides a flexible modeling framework to deal with several relevant problems. Sequences, Trees, Disjoint Intervals and Matching are some useful examples of the type of structures we would like to predict. An elegant learning scheme for this prediction setting is the Structured Perceptron algorithm, which is sure to converge under some linear separability conditions. The framework integrates a very simple Structured layer on top of a latent costs network. Our key contribution is a novel loss function that incorporates structural information and simplifies learning. The effectiveness of this framework is illustrated with sequence prediction problems. We explore LSTM neural network architectures to model the latent costs layer, since our experiments concern NLP tasks. We perform basic experiments with Chunking in English. The SPN predictor outperforms its CRF equivalent. Our initial findings strongly indicate that SPN is a versatile framework with a powerful learning strategy.
基于潜在成本学习的结构化预测网络
结构化预测提供了一个灵活的建模框架来处理几个相关问题。序列、树、不相交区间和匹配是我们想要预测的结构类型的一些有用的例子。这种预测设置的一个优雅的学习方案是结构化感知器算法,它在一些线性可分性条件下肯定是收敛的。该框架在潜在成本网络之上集成了一个非常简单的结构化层。我们的主要贡献是一种新的损失函数,它结合了结构信息并简化了学习。通过序列预测问题说明了该框架的有效性。我们探索LSTM神经网络架构来建模潜在成本层,因为我们的实验涉及NLP任务。我们进行英语组块的基本实验。SPN预测器优于等效的CRF预测器。我们的初步研究结果有力地表明,SPN是一个具有强大学习策略的通用框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信