A human workload monitoring method considering qualitative and quantitative data fusion

Xin Lu, S. Zeng, Jianbin Guo, Guo Zhou
{"title":"A human workload monitoring method considering qualitative and quantitative data fusion","authors":"Xin Lu, S. Zeng, Jianbin Guo, Guo Zhou","doi":"10.1109/ICRSE.2017.8030742","DOIUrl":null,"url":null,"abstract":"Nowadays, human workload plays an important role in human machine system's reliability and safety area. No matter in driving, flying or other field, excessive workload may lead to the ignorance of key message, which is of importance in mission accomplishment. Traditional research method uses only these quantitative physiological parameters (such as EEG,EMG or eye movement parameters) to monitor the workload state. Although physiological parameters alone have certain relation with workload degree, it usually cannot reflect the state comprehensively and effectively. In other words, the relation between single parameter and workload is not sufficient. Besides, qualitative parameter like human mood and workload before experiment is another important input parameter that should take account of. In order to deal with the qualitative and quantitative input in the meantime, fuzzy neural network is adopted as a tool to monitor the workload state. At last, experiment's data is utilized to illustrate the effectiveness of above-mentioned method compared with either physiological parameter or eyes movement parameter.","PeriodicalId":317626,"journal":{"name":"2017 Second International Conference on Reliability Systems Engineering (ICRSE)","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Second International Conference on Reliability Systems Engineering (ICRSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRSE.2017.8030742","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Nowadays, human workload plays an important role in human machine system's reliability and safety area. No matter in driving, flying or other field, excessive workload may lead to the ignorance of key message, which is of importance in mission accomplishment. Traditional research method uses only these quantitative physiological parameters (such as EEG,EMG or eye movement parameters) to monitor the workload state. Although physiological parameters alone have certain relation with workload degree, it usually cannot reflect the state comprehensively and effectively. In other words, the relation between single parameter and workload is not sufficient. Besides, qualitative parameter like human mood and workload before experiment is another important input parameter that should take account of. In order to deal with the qualitative and quantitative input in the meantime, fuzzy neural network is adopted as a tool to monitor the workload state. At last, experiment's data is utilized to illustrate the effectiveness of above-mentioned method compared with either physiological parameter or eyes movement parameter.
一种考虑定性和定量数据融合的人力工作量监测方法
目前,人工工作量在人机系统的可靠性和安全性方面起着重要的作用。无论是在驾驶、飞行还是其他领域,过度的工作量都可能导致对关键信息的忽视,而关键信息对任务的完成至关重要。传统的研究方法仅使用这些定量的生理参数(如脑电图、肌电图或眼动参数)来监测工作负荷状态。虽然单独的生理参数与工作量程度有一定的关系,但往往不能全面有效地反映工作状态。换句话说,单个参数与工作量之间的关系并不充分。此外,实验前的人的情绪、工作量等定性参数也是需要考虑的重要输入参数。为了同时处理定性和定量输入,采用模糊神经网络作为监测工作负载状态的工具。最后,通过实验数据与生理参数和眼动参数进行比较,说明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信