Contextual modeling content-based approaches for new-item recommendation

Victor Codina, Luis Oliva
{"title":"Contextual modeling content-based approaches for new-item recommendation","authors":"Victor Codina, Luis Oliva","doi":"10.1145/2637002.2637037","DOIUrl":null,"url":null,"abstract":"The new-item cold-start problem is a well-known limitation of context-free and context-aware Collaborative Filtering (CF) prediction models. In such situations, only Content-based (CB) approaches can produce meaningful recommendations. In this paper, we propose three Context-Aware Content-Based (CACB) models that extend a linear CB prediction model with context-awareness by including additional parameters that represent the influence of context with respect to the users' interests and rating behaviour. The precision of the proposed models has been evaluated using a contextually-tagged rating data set for journey plans in the city of Barcelona (Spain), which has a high number of new items. We demonstrate that, in this data set, the most sophisticated CACB model, which exploits the contextual information at different granularities and also the distributional similarities between contextual conditions during user modeling, significantly outperforms a context-free CB model as well as a state-of-the-art context-aware approach.","PeriodicalId":447867,"journal":{"name":"Proceedings of the 5th Information Interaction in Context Symposium","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 5th Information Interaction in Context Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2637002.2637037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The new-item cold-start problem is a well-known limitation of context-free and context-aware Collaborative Filtering (CF) prediction models. In such situations, only Content-based (CB) approaches can produce meaningful recommendations. In this paper, we propose three Context-Aware Content-Based (CACB) models that extend a linear CB prediction model with context-awareness by including additional parameters that represent the influence of context with respect to the users' interests and rating behaviour. The precision of the proposed models has been evaluated using a contextually-tagged rating data set for journey plans in the city of Barcelona (Spain), which has a high number of new items. We demonstrate that, in this data set, the most sophisticated CACB model, which exploits the contextual information at different granularities and also the distributional similarities between contextual conditions during user modeling, significantly outperforms a context-free CB model as well as a state-of-the-art context-aware approach.
用于新项目推荐的基于内容的上下文建模方法
新项目冷启动问题是上下文无关和上下文感知协同过滤(CF)预测模型的一个众所周知的局限性。在这种情况下,只有基于内容(CB)的方法才能产生有意义的建议。在本文中,我们提出了三个上下文感知的基于内容的(CACB)模型,这些模型扩展了具有上下文感知的线性CB预测模型,通过包含代表上下文对用户兴趣和评级行为的影响的附加参数。所提出的模型的精度已被评估使用上下文标记的评级数据集的旅行计划在巴塞罗那市(西班牙),其中有大量的新项目。我们证明,在该数据集中,最复杂的CACB模型(利用不同粒度的上下文信息以及用户建模期间上下文条件之间的分布相似性)显著优于无上下文的CB模型以及最先进的上下文感知方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信