R. Nassar, O. Moeini, John Mastrogiacomo, C. O’Dell, R. Nelson, M. Kiel, A. Chatterjee, A. Eldering, D. Crisp
{"title":"Tracking CO2 emission reductions from space: A case study at Europe’s largest fossil fuel power plant","authors":"R. Nassar, O. Moeini, John Mastrogiacomo, C. O’Dell, R. Nelson, M. Kiel, A. Chatterjee, A. Eldering, D. Crisp","doi":"10.3389/frsen.2022.1028240","DOIUrl":null,"url":null,"abstract":"We quantify CO2 emissions from Europe’s largest fossil fuel power plant, the Bełchatόw Power Station in Poland, using CO2 observations from NASA’s Orbiting Carbon Observatory (OCO) 2 and 3 missions on 10 occasions from March 2017 to June 2022. The space-based CO2 emission estimates reveal emission changes with a trend that is consistent with the independent reported hourly power generation trend that results from both permanent and temporary unit shutdowns. OCO-2 and OCO-3 emission estimates agree with the bottom-up emission estimates within their respective 1σ uncertainties for 9 of the 10 occasions. Different methods for defining background values and corresponding uncertainties are explored in order to better understand this important potential error contribution. These results demonstrate the ability of existing space-based CO2 observations to quantify emission reductions for a large facility when adequate coverage and revisits are available. The results are informative for understanding the expected capability and potential limitations of the planned Copernicus Anthropogenic CO2 Monitoring (CO2M) and other future satellites to support monitoring and verification of CO2 emission reductions resulting from climate change mitigation efforts such as the Paris Agreement.","PeriodicalId":198378,"journal":{"name":"Frontiers in Remote Sensing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frsen.2022.1028240","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16
Abstract
We quantify CO2 emissions from Europe’s largest fossil fuel power plant, the Bełchatόw Power Station in Poland, using CO2 observations from NASA’s Orbiting Carbon Observatory (OCO) 2 and 3 missions on 10 occasions from March 2017 to June 2022. The space-based CO2 emission estimates reveal emission changes with a trend that is consistent with the independent reported hourly power generation trend that results from both permanent and temporary unit shutdowns. OCO-2 and OCO-3 emission estimates agree with the bottom-up emission estimates within their respective 1σ uncertainties for 9 of the 10 occasions. Different methods for defining background values and corresponding uncertainties are explored in order to better understand this important potential error contribution. These results demonstrate the ability of existing space-based CO2 observations to quantify emission reductions for a large facility when adequate coverage and revisits are available. The results are informative for understanding the expected capability and potential limitations of the planned Copernicus Anthropogenic CO2 Monitoring (CO2M) and other future satellites to support monitoring and verification of CO2 emission reductions resulting from climate change mitigation efforts such as the Paris Agreement.