Separations in Communication Complexity Using Cheat Sheets and Information Complexity

Anurag Anshu, Aleksandrs Belovs, S. Ben-David, Mika Göös, Rahul Jain, Robin Kothari, Troy Lee, M. Santha
{"title":"Separations in Communication Complexity Using Cheat Sheets and Information Complexity","authors":"Anurag Anshu, Aleksandrs Belovs, S. Ben-David, Mika Göös, Rahul Jain, Robin Kothari, Troy Lee, M. Santha","doi":"10.1109/FOCS.2016.66","DOIUrl":null,"url":null,"abstract":"While exponential separations are known between quantum and randomized communication complexity for partial functions (Raz, STOC 1999), the best known separation between these measures for a total function is quadratic, witnessed by the disjointness function. We give the first super-quadratic separation between quantum and randomized communication complexity for a total function, giving an example exhibiting a power 2.5 gap. We further present a 1.5 power separation between exact quantum and randomized communication complexity, improving on the previous ≈ 1.15 separation by Ambainis (STOC 2013). Finally, we present a nearly optimal quadratic separation between randomized communication complexity and the logarithm of the partition number, improving upon the previous best power 1.5 separation due to Goos, Jayram, Pitassi, and Watson. Our results are the communication analogues of separations in query complexity proved using the recent cheat sheet framework of Aaronson, Ben-David, and Kothari (STOC 2016). Our main technical results are randomized communication and information complexity lower bounds for a family of functions, called lookup functions, that generalize and port the cheat sheet framework to communication complexity.","PeriodicalId":414001,"journal":{"name":"2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FOCS.2016.66","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

While exponential separations are known between quantum and randomized communication complexity for partial functions (Raz, STOC 1999), the best known separation between these measures for a total function is quadratic, witnessed by the disjointness function. We give the first super-quadratic separation between quantum and randomized communication complexity for a total function, giving an example exhibiting a power 2.5 gap. We further present a 1.5 power separation between exact quantum and randomized communication complexity, improving on the previous ≈ 1.15 separation by Ambainis (STOC 2013). Finally, we present a nearly optimal quadratic separation between randomized communication complexity and the logarithm of the partition number, improving upon the previous best power 1.5 separation due to Goos, Jayram, Pitassi, and Watson. Our results are the communication analogues of separations in query complexity proved using the recent cheat sheet framework of Aaronson, Ben-David, and Kothari (STOC 2016). Our main technical results are randomized communication and information complexity lower bounds for a family of functions, called lookup functions, that generalize and port the cheat sheet framework to communication complexity.
使用小抄表和信息复杂性分离通信复杂性
虽然已知部分函数的量子和随机通信复杂性之间存在指数分离(Raz, STOC 1999),但对于总函数,这些度量之间最著名的分离是二次的,由不连接函数见证。我们给出了一个全函数的量子和随机通信复杂度之间的第一个超二次分离,并给出了一个显示2.5次方差距的例子。我们进一步提出了精确量子和随机通信复杂度之间的1.5功率分离,改进了Ambainis (STOC 2013)之前的≈1.15功率分离。最后,我们提出了随机通信复杂度和分区数对数之间的近似最优二次分离,改进了Goos、Jayram、Pitassi和Watson之前的最佳1.5次分离。我们的结果是使用Aaronson, Ben-David和Kothari (STOC 2016)最近的小抄表框架证明的查询复杂性分离的通信类似物。我们的主要技术成果是一组函数(称为查找函数)的随机通信和信息复杂性下界,这些函数将小抄框架推广并移植到通信复杂性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信