Non-Linear Non-Gaussian Gaussian and Seventh-Order Volume Kalman Filter Algorithm and Its Modeling Application

Zhengrong Liu
{"title":"Non-Linear Non-Gaussian Gaussian and Seventh-Order Volume Kalman Filter Algorithm and Its Modeling Application","authors":"Zhengrong Liu","doi":"10.1109/ICCMC53470.2022.9753827","DOIUrl":null,"url":null,"abstract":"In this paper, the Gaussian sum recursive algorithm of the nonlinear non-Gaussian state space model is derived by expressing the state noise and observation noise of the model in the form of Gaussian sum. The algorithm uses the form of Gaussian sum to approximate the non-Gaussian posterior probability density, and uses SCKF as a sub-filter to update the time and measurement of each Gaussian component to effectively solve the problem of nonlinear non-Gaussian filtering. The simulation results verify the effectiveness and correctness of the algorithm. While ensuring accuracy, EKSF and GHSF greatly reduce the amount of calculation. The simulation time is about 6.5% and 6.7% of GSPF, respectively.","PeriodicalId":345346,"journal":{"name":"2022 6th International Conference on Computing Methodologies and Communication (ICCMC)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 6th International Conference on Computing Methodologies and Communication (ICCMC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCMC53470.2022.9753827","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, the Gaussian sum recursive algorithm of the nonlinear non-Gaussian state space model is derived by expressing the state noise and observation noise of the model in the form of Gaussian sum. The algorithm uses the form of Gaussian sum to approximate the non-Gaussian posterior probability density, and uses SCKF as a sub-filter to update the time and measurement of each Gaussian component to effectively solve the problem of nonlinear non-Gaussian filtering. The simulation results verify the effectiveness and correctness of the algorithm. While ensuring accuracy, EKSF and GHSF greatly reduce the amount of calculation. The simulation time is about 6.5% and 6.7% of GSPF, respectively.
非线性非高斯高斯和七阶体积卡尔曼滤波算法及其建模应用
本文通过将模型的状态噪声和观测噪声以高斯和的形式表示,推导出非线性非高斯状态空间模型的高斯和递推算法。该算法采用高斯求和的形式近似非高斯后验概率密度,并采用SCKF作为子滤波器更新各高斯分量的时间和度量值,有效解决了非线性非高斯滤波问题。仿真结果验证了该算法的有效性和正确性。在保证精度的同时,EKSF和GHSF大大减少了计算量。仿真时间分别约为GSPF的6.5%和6.7%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信