Gaussion Mutation Particle Swarm Optimization with Dynamic Adaptation Inertia Weight

Lili Li, Xingshi He
{"title":"Gaussion Mutation Particle Swarm Optimization with Dynamic Adaptation Inertia Weight","authors":"Lili Li, Xingshi He","doi":"10.1109/WCSE.2009.24","DOIUrl":null,"url":null,"abstract":"An improved PSO with decreasing inertia weight is proposed in this paper, which is different from the inertia weight of standard PSO. In addition, a new social component instead of the old one to make more explore and a tiny Gauss perturbation joined in the position equation to help maintain swarm diversity. Four standard test functions with asymmetric initial range settings are used to prove its validity. Experimental results verify its superiority both in convergent speed and solution precision. Conclusions are drawn in the end","PeriodicalId":331155,"journal":{"name":"2009 WRI World Congress on Software Engineering","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 WRI World Congress on Software Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WCSE.2009.24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

An improved PSO with decreasing inertia weight is proposed in this paper, which is different from the inertia weight of standard PSO. In addition, a new social component instead of the old one to make more explore and a tiny Gauss perturbation joined in the position equation to help maintain swarm diversity. Four standard test functions with asymmetric initial range settings are used to prove its validity. Experimental results verify its superiority both in convergent speed and solution precision. Conclusions are drawn in the end
动态自适应惯性权的高斯突变粒子群优化
本文提出了一种改进的粒子群算法,该算法与标准粒子群算法的惯性权重不同,其惯性权重减小。此外,一个新的社会成分代替旧的,使更多的探索和一个微小的高斯扰动加入到位置方程,以帮助保持群体的多样性。采用非对称初始量程设置的四个标准测试函数验证了该方法的有效性。实验结果验证了该方法在收敛速度和求解精度上的优越性。最后得出结论
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信