Experimental demonstration of machine-learning-aided QoT estimation in multi-domain elastic optical networks with alien wavelengths

R. Proietti, Xiaoliang Chen, Kaiqi Zhang, Gengchen Liu, M. Shamsabardeh, A. Castro, L. Velasco, Zuqing Zhu, S. Yoo
{"title":"Experimental demonstration of machine-learning-aided QoT estimation in multi-domain elastic optical networks with alien wavelengths","authors":"R. Proietti, Xiaoliang Chen, Kaiqi Zhang, Gengchen Liu, M. Shamsabardeh, A. Castro, L. Velasco, Zuqing Zhu, S. Yoo","doi":"10.1364/JOCN.11.0000A1","DOIUrl":null,"url":null,"abstract":"In multi-domain elastic optical networks with alien wavelengths, each domain needs to consider intradomain and interdomain alien traffic to estimate and guarantee the required quality of transmission (QoT) for each lightpath and perform provisioning operations. This paper experimentally demonstrates an alien wavelength performance monitoring technique and machine-learning-aided QoT estimation for lightpath provisioning of intradomain/ interdomain traffic. Testbed experiments demonstrate modulation format recognition, QoT monitoring, and cognitive routing for a 160 Gbaud alien multi-wavelength light- path. By using experimental training datasets from the testbed and an artificial neural network, we demonstrated an accurate optical-signal-to-noise ratio prediction with an accuracy of ~95% when using 1200 data points.","PeriodicalId":371742,"journal":{"name":"IEEE/OSA Journal of Optical Communications and Networking","volume":"115 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"53","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE/OSA Journal of Optical Communications and Networking","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/JOCN.11.0000A1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 53

Abstract

In multi-domain elastic optical networks with alien wavelengths, each domain needs to consider intradomain and interdomain alien traffic to estimate and guarantee the required quality of transmission (QoT) for each lightpath and perform provisioning operations. This paper experimentally demonstrates an alien wavelength performance monitoring technique and machine-learning-aided QoT estimation for lightpath provisioning of intradomain/ interdomain traffic. Testbed experiments demonstrate modulation format recognition, QoT monitoring, and cognitive routing for a 160 Gbaud alien multi-wavelength light- path. By using experimental training datasets from the testbed and an artificial neural network, we demonstrated an accurate optical-signal-to-noise ratio prediction with an accuracy of ~95% when using 1200 data points.
异波长多域弹性光网络中机器学习辅助QoT估计的实验验证
在具有异波长的多域弹性光网络中,每个域需要考虑域内和域间的异流量,以估计和保证每个光路所需的传输质量(QoT),并进行预置操作。本文通过实验演示了一种外来波长性能监测技术和机器学习辅助QoT估计,用于域内/域间流量的光路配置。测试台实验演示了调制格式识别、QoT监控和160 Gbaud外星多波长光路的认知路由。通过使用试验台的实验训练数据集和人工神经网络,我们证明了在使用1200个数据点时准确的光信噪比预测精度为95%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信