Islanding detection for PV and DFIG using decision tree and AdaBoost algorithm

Seyed Sohail Madani, A. Abbaspour, M. Beiraghi, Payam Zamani Dehkordi, A. Ranjbar
{"title":"Islanding detection for PV and DFIG using decision tree and AdaBoost algorithm","authors":"Seyed Sohail Madani, A. Abbaspour, M. Beiraghi, Payam Zamani Dehkordi, A. Ranjbar","doi":"10.1109/ISGTEurope.2012.6465818","DOIUrl":null,"url":null,"abstract":"Under smart grid environment, islanding detection plays an important role in reliable operation of distributed generation (DG) units. In this paper an intelligent-based islanding detection algorithm for PV and DFIG units is proposed. Decision tree algorithm is used to classify islanding detection instances. This algorithm is rapid, simple, intelligible and easy to interpret. The error rate of this method is reduced by Adaptive Boosting (AdaBoost) technique. The proposed method is tested on a distribution system including PV, DFIG and synchronous generator. Probable events in the system are simulated under diverse operating states to generate classification data set. First and second order derivatives of locally measured electrical parameters are used for construction of 16-dimensional instances. The results indicate that Adaboost technique yields improved islanding detection accuracy. This algorithm is capable of detecting islanding phenomenon under operating states with negligible power mismatch.","PeriodicalId":244881,"journal":{"name":"2012 3rd IEEE PES Innovative Smart Grid Technologies Europe (ISGT Europe)","volume":"115 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 3rd IEEE PES Innovative Smart Grid Technologies Europe (ISGT Europe)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISGTEurope.2012.6465818","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

Under smart grid environment, islanding detection plays an important role in reliable operation of distributed generation (DG) units. In this paper an intelligent-based islanding detection algorithm for PV and DFIG units is proposed. Decision tree algorithm is used to classify islanding detection instances. This algorithm is rapid, simple, intelligible and easy to interpret. The error rate of this method is reduced by Adaptive Boosting (AdaBoost) technique. The proposed method is tested on a distribution system including PV, DFIG and synchronous generator. Probable events in the system are simulated under diverse operating states to generate classification data set. First and second order derivatives of locally measured electrical parameters are used for construction of 16-dimensional instances. The results indicate that Adaboost technique yields improved islanding detection accuracy. This algorithm is capable of detecting islanding phenomenon under operating states with negligible power mismatch.
基于决策树和AdaBoost算法的PV和DFIG孤岛检测
在智能电网环境下,孤岛检测对分布式发电机组的可靠运行起着重要作用。本文提出了一种基于智能的光伏机组和双馈机组孤岛检测算法。采用决策树算法对孤岛检测实例进行分类。该算法具有快速、简单、易理解、易于解释等特点。采用自适应增强(AdaBoost)技术降低了该方法的错误率。在一个包括光伏、DFIG和同步发电机的配电系统上进行了试验。模拟系统在不同运行状态下可能发生的事件,生成分类数据集。局部测量电参数的一阶和二阶导数用于构造16维实例。结果表明,Adaboost技术提高了孤岛检测精度。该算法能够在功率失配可忽略的工作状态下检测出孤岛现象。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信