Risk-Based Optimization of Resource Provisioning in Mobile Edge Computing

H. Badri, Tayebeh Bahreini, Daniel Grosu, Kai Yang
{"title":"Risk-Based Optimization of Resource Provisioning in Mobile Edge Computing","authors":"H. Badri, Tayebeh Bahreini, Daniel Grosu, Kai Yang","doi":"10.1109/SEC.2018.00033","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a risked-based optimization approach to resource provisioning in MEC systems with the aim of taking into account the risk of overloading of edge servers when making allocation decisions. Assuming that resource requirements of mobile applications are stochastic parameters, we formulate the problem as a chance-constrained stochastic program. In order to solve the problem in reasonable amount of time, we employ the Sample Average Approximation (SAA) method. We evaluate the efficiency of the proposed approach by conducting an experimental analysis on instances with different problem settings.","PeriodicalId":376439,"journal":{"name":"2018 IEEE/ACM Symposium on Edge Computing (SEC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/ACM Symposium on Edge Computing (SEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SEC.2018.00033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

In this paper, we propose a risked-based optimization approach to resource provisioning in MEC systems with the aim of taking into account the risk of overloading of edge servers when making allocation decisions. Assuming that resource requirements of mobile applications are stochastic parameters, we formulate the problem as a chance-constrained stochastic program. In order to solve the problem in reasonable amount of time, we employ the Sample Average Approximation (SAA) method. We evaluate the efficiency of the proposed approach by conducting an experimental analysis on instances with different problem settings.
移动边缘计算中基于风险的资源配置优化
在本文中,我们提出了一种基于风险的MEC系统资源配置优化方法,目的是在做出分配决策时考虑边缘服务器过载的风险。假设移动应用程序的资源需求是随机参数,我们将问题表述为一个机会约束的随机规划。为了在合理的时间内解决问题,我们采用了样本平均近似(SAA)方法。我们通过对具有不同问题设置的实例进行实验分析来评估所提出方法的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信