Edge-Disjoint Hamiltonian Cycles in de Bruijn Networks

R. Rowley, B. Bose
{"title":"Edge-Disjoint Hamiltonian Cycles in de Bruijn Networks","authors":"R. Rowley, B. Bose","doi":"10.1109/DMCC.1991.633359","DOIUrl":null,"url":null,"abstract":"We show that a slightly modified degree 2r de Bruijn graph can be decomposed into r Hamiltonian cycles when r is a power of a prime. Adjacent nodes in the de Bruijn graph remain adjacent in the modified graph, and the maximum degree does not increase. The presence of edge-disjoint Hamiltonian cycles provides an advantage when implementing algorithms that requ.ire a ring structure by allowing message traflc to be spread evenly across the network. The changes also enhance fault tolerance.","PeriodicalId":313314,"journal":{"name":"The Sixth Distributed Memory Computing Conference, 1991. Proceedings","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Sixth Distributed Memory Computing Conference, 1991. Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DMCC.1991.633359","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

Abstract

We show that a slightly modified degree 2r de Bruijn graph can be decomposed into r Hamiltonian cycles when r is a power of a prime. Adjacent nodes in the de Bruijn graph remain adjacent in the modified graph, and the maximum degree does not increase. The presence of edge-disjoint Hamiltonian cycles provides an advantage when implementing algorithms that requ.ire a ring structure by allowing message traflc to be spread evenly across the network. The changes also enhance fault tolerance.
de Bruijn网络中的边不相交哈密顿环
当r是素数的幂时,我们证明了稍微改进的2r次德布鲁因图可以分解为r个哈密顿循环。de Bruijn图中的相邻节点在修改后的图中保持相邻,最大度不增加。边不相交哈密顿环的存在在实现需要。通过允许消息流量在整个网络中均匀分布来创建一个环形结构。这些更改还增强了容错性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信