Regularization Strategy for Multi-organ Nucleus Segmentation with Localizable Features

Attasuntorn Traisuwan, S. Limsiroratana, P. Phukpattaranont, Pichaya Tandayya
{"title":"Regularization Strategy for Multi-organ Nucleus Segmentation with Localizable Features","authors":"Attasuntorn Traisuwan, S. Limsiroratana, P. Phukpattaranont, Pichaya Tandayya","doi":"10.1109/jcsse54890.2022.9836241","DOIUrl":null,"url":null,"abstract":"Applying color normalization on H&E images is a famous protocol in digital pathology. Recently, the CutMix technique has a strong ability to generalize the classification models. In this paper, we propose the modified CutMix for segmentation tasks. We apply it to the MoNuSeg dataset. The U-Net with a MobileNet backbone is used for training and inferencing. Moreover, we compare it with the traditional color normalization. The results show that our modified CutMix outperformed color normalization with the +0.179 AJI score. It achieved the IoU score faster and got a higher AP for every IoU threshold.","PeriodicalId":284735,"journal":{"name":"2022 19th International Joint Conference on Computer Science and Software Engineering (JCSSE)","volume":"95 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 19th International Joint Conference on Computer Science and Software Engineering (JCSSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/jcsse54890.2022.9836241","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Applying color normalization on H&E images is a famous protocol in digital pathology. Recently, the CutMix technique has a strong ability to generalize the classification models. In this paper, we propose the modified CutMix for segmentation tasks. We apply it to the MoNuSeg dataset. The U-Net with a MobileNet backbone is used for training and inferencing. Moreover, we compare it with the traditional color normalization. The results show that our modified CutMix outperformed color normalization with the +0.179 AJI score. It achieved the IoU score faster and got a higher AP for every IoU threshold.
具有可定位特征的多器官核分割正则化策略
在H&E图像上应用颜色归一化是数字病理学中一个著名的方案。近年来,CutMix技术具有较强的分类模型泛化能力。在本文中,我们提出了改进的CutMix分割任务。我们将其应用于MoNuSeg数据集。带有MobileNet骨干网的U-Net用于训练和推理。并与传统的颜色归一化方法进行了比较。结果表明,我们改进的CutMix以+0.179的AJI得分优于颜色归一化。它实现IoU得分更快,并且每个IoU阈值的AP更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信