{"title":"Deep Reinforcement Learning for Secondary Energy Scheduling in Steel Industry","authors":"Tai-Qiang Zhang, F. Zhou, Jun Zhao, Wei Wang","doi":"10.1109/IAI50351.2020.9262196","DOIUrl":null,"url":null,"abstract":"Considering that the blast furnace gas(BFG) tank level scheduling is of great significance for the steel plant's secondary energy system balance, this paper proposed a scheduling model based on deep reinforcement learning. In this model, BFG gas tank scheduling was transformed into searching the best production state under a certain operating condition, and a deep Q-learning network was used to search this state. Moreover, in order to speed up convergence and improve algorithm stability, an experience based pre-training was added to the training session. In order to verify the effectiveness of the proposed method, experiments are carried out with the secondary energy system production data of a domestic steel enterprise. The results show that the proposed method is more effective than artificial scheduling.","PeriodicalId":137183,"journal":{"name":"2020 2nd International Conference on Industrial Artificial Intelligence (IAI)","volume":"90 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 2nd International Conference on Industrial Artificial Intelligence (IAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAI50351.2020.9262196","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Considering that the blast furnace gas(BFG) tank level scheduling is of great significance for the steel plant's secondary energy system balance, this paper proposed a scheduling model based on deep reinforcement learning. In this model, BFG gas tank scheduling was transformed into searching the best production state under a certain operating condition, and a deep Q-learning network was used to search this state. Moreover, in order to speed up convergence and improve algorithm stability, an experience based pre-training was added to the training session. In order to verify the effectiveness of the proposed method, experiments are carried out with the secondary energy system production data of a domestic steel enterprise. The results show that the proposed method is more effective than artificial scheduling.