Long-term trend in non-stationary time series with nonlinear analysis techniques

L. Deng
{"title":"Long-term trend in non-stationary time series with nonlinear analysis techniques","authors":"L. Deng","doi":"10.1109/CISP.2013.6745231","DOIUrl":null,"url":null,"abstract":"Understanding, modeling, and forecasting the evolution of complex dynamic system is an important but hard task in many natural phenomena. In the present paper, three advanced analysis approaches, including the rescaled range analysis, empirical mode decomposition and cross-recurrence plot, have been proposed to analyze the long-term persistence and secular trend of nonlinear and non-stationary time series. The case study uses the chaotic time-series data of solar-activity indicators in the time interval from 1874 May to 2013 March. The analysis results indicate that the combination of these three techniques is an effective tool not only for capturing the long-range persistence of non-stationary processes, but also for determining the secular trend of a complex time-series.","PeriodicalId":442320,"journal":{"name":"2013 6th International Congress on Image and Signal Processing (CISP)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 6th International Congress on Image and Signal Processing (CISP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISP.2013.6745231","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Understanding, modeling, and forecasting the evolution of complex dynamic system is an important but hard task in many natural phenomena. In the present paper, three advanced analysis approaches, including the rescaled range analysis, empirical mode decomposition and cross-recurrence plot, have been proposed to analyze the long-term persistence and secular trend of nonlinear and non-stationary time series. The case study uses the chaotic time-series data of solar-activity indicators in the time interval from 1874 May to 2013 March. The analysis results indicate that the combination of these three techniques is an effective tool not only for capturing the long-range persistence of non-stationary processes, but also for determining the secular trend of a complex time-series.
用非线性分析技术分析非平稳时间序列的长期趋势
在许多自然现象中,理解、建模和预测复杂动态系统的演化是一项重要而艰巨的任务。本文提出了重标度极差分析、经验模态分解和交叉递归图三种先进的分析方法来分析非线性非平稳时间序列的长期持续性和长期趋势。案例研究使用1874年5月至2013年3月时间区间的太阳活动指标混沌时间序列数据。分析结果表明,这三种技术的结合不仅是捕获非平稳过程的长期持续性,而且是确定复杂时间序列长期趋势的有效工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信