{"title":"BioSEAL: In-Memory Biological Sequence Alignment Accelerator for Large-Scale Genomic Data","authors":"R. Kaplan, L. Yavits, R. Ginosar","doi":"10.1145/3383669.3398279","DOIUrl":null,"url":null,"abstract":"Genome sequences contain hundreds of millions of DNA base pairs. Finding the degree of similarity between two genomes requires executing a compute-intensive dynamic programming algorithm, such as Smith-Waterman. Traditional von Neumann architectures have limited parallelism and cannot provide an efficient solution for large-scale genomic data. Approximate heuristic methods (e.g. BLAST) are commonly used. However, they are suboptimal and still compute-intensive. In this work, we present BioSEAL, a biological sequence alignment accelerator. BioSEAL is a massively parallel non-von Neumann processing-in-memory architecture for large-scale DNA and protein sequence alignment. BioSEAL is based on resistive content addressable memory, capable of energy-efficient and highperformance associative processing. We present an associative processing algorithm for entire database sequence alignment on BioSEAL and compare its performance and power consumption with state-of-art solutions. We show that BioSEAL can achieve up to 57× speedup and 156× better energy efficiency, compared with existing solutions for genome sequence alignment and protein sequence database search.","PeriodicalId":225327,"journal":{"name":"Proceedings of the 13th ACM International Systems and Storage Conference","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 13th ACM International Systems and Storage Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3383669.3398279","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31
Abstract
Genome sequences contain hundreds of millions of DNA base pairs. Finding the degree of similarity between two genomes requires executing a compute-intensive dynamic programming algorithm, such as Smith-Waterman. Traditional von Neumann architectures have limited parallelism and cannot provide an efficient solution for large-scale genomic data. Approximate heuristic methods (e.g. BLAST) are commonly used. However, they are suboptimal and still compute-intensive. In this work, we present BioSEAL, a biological sequence alignment accelerator. BioSEAL is a massively parallel non-von Neumann processing-in-memory architecture for large-scale DNA and protein sequence alignment. BioSEAL is based on resistive content addressable memory, capable of energy-efficient and highperformance associative processing. We present an associative processing algorithm for entire database sequence alignment on BioSEAL and compare its performance and power consumption with state-of-art solutions. We show that BioSEAL can achieve up to 57× speedup and 156× better energy efficiency, compared with existing solutions for genome sequence alignment and protein sequence database search.