{"title":"Computation of yield-optimized Pareto fronts for analog integrated circuit specifications","authors":"Daniel Mueller-Gritschneder, H. Graeb","doi":"10.1109/DATE.2010.5456971","DOIUrl":null,"url":null,"abstract":"For any analog integrated circuit, a simultaneous analysis of the performance trade-offs and impact of variability can be conducted by computing the Pareto front of the realizable specifications. The resulting Specification Pareto front shows the most ambitious specification combinations for a given minimum parametric yield. Recent Pareto optimization approaches compute a so-called yield-aware specification Pareto front by applying a two-step approach. First, the Pareto front is calculated for nominal conditions. Then, a subsequent analysis of the impact of variability is conducted. In the first part of this work, it is shown that such a two-step approach fails to generate the most ambitious realizable specification bounds for mismatch-sensitive performances. In the second part of this work, a novel single-step approach to compute yield-optimized specification Pareto fronts is presented. Its optimization objectives are the realizable specification bounds themselves. Experimental results show that for mismatch-sensitive performances the resulting yield-optimized specification Pareto front is superior to the yieldaware specification Pareto front.","PeriodicalId":432902,"journal":{"name":"2010 Design, Automation & Test in Europe Conference & Exhibition (DATE 2010)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Design, Automation & Test in Europe Conference & Exhibition (DATE 2010)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DATE.2010.5456971","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18
Abstract
For any analog integrated circuit, a simultaneous analysis of the performance trade-offs and impact of variability can be conducted by computing the Pareto front of the realizable specifications. The resulting Specification Pareto front shows the most ambitious specification combinations for a given minimum parametric yield. Recent Pareto optimization approaches compute a so-called yield-aware specification Pareto front by applying a two-step approach. First, the Pareto front is calculated for nominal conditions. Then, a subsequent analysis of the impact of variability is conducted. In the first part of this work, it is shown that such a two-step approach fails to generate the most ambitious realizable specification bounds for mismatch-sensitive performances. In the second part of this work, a novel single-step approach to compute yield-optimized specification Pareto fronts is presented. Its optimization objectives are the realizable specification bounds themselves. Experimental results show that for mismatch-sensitive performances the resulting yield-optimized specification Pareto front is superior to the yieldaware specification Pareto front.