Discourse Connective Argument Identification with Connective Specific Rankers

R. Elwell, Jason Baldridge
{"title":"Discourse Connective Argument Identification with Connective Specific Rankers","authors":"R. Elwell, Jason Baldridge","doi":"10.1109/ICSC.2008.50","DOIUrl":null,"url":null,"abstract":"Automatically identifying the arguments of discourse connectives (e.g., and, because, however) is an important part of modeling discourse structure. Previous work used a single, general classifier for different connectives; however, connectives differ in their distribution and behavior, so conflating them this way loses discriminative power. Here, we show that using models for specific connectives and types of connectives and interpolating them with a general model improves performance. We also describe additional features that provide greater sensitivity to morphological, syntactic, and discourse patterns, and less sensitivity to parse quality. Our best model achieves a 3.6% absolute improvement over the state-of-the-art on identifying both arguments of discourse connectives when using features from gold-standard parses, and a 9.0% improvement when using automatically produced parses.","PeriodicalId":102805,"journal":{"name":"2008 IEEE International Conference on Semantic Computing","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"71","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International Conference on Semantic Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSC.2008.50","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 71

Abstract

Automatically identifying the arguments of discourse connectives (e.g., and, because, however) is an important part of modeling discourse structure. Previous work used a single, general classifier for different connectives; however, connectives differ in their distribution and behavior, so conflating them this way loses discriminative power. Here, we show that using models for specific connectives and types of connectives and interpolating them with a general model improves performance. We also describe additional features that provide greater sensitivity to morphological, syntactic, and discourse patterns, and less sensitivity to parse quality. Our best model achieves a 3.6% absolute improvement over the state-of-the-art on identifying both arguments of discourse connectives when using features from gold-standard parses, and a 9.0% improvement when using automatically produced parses.
基于连接特定等级的语篇连接论点识别
自动识别语篇连接词的论点(例如,and, because, however)是语篇结构建模的重要组成部分。以前的工作使用单一的通用分类器来区分不同的连接词;然而,连接词的分布和行为是不同的,所以以这种方式合并它们会失去辨别力。在这里,我们展示了使用特定连接词和连接词类型的模型,并将它们插入到一个通用模型中,可以提高性能。我们还描述了其他特性,这些特性对形态、句法和话语模式提供了更高的敏感性,而对解析质量的敏感性较低。我们最好的模型在使用黄金标准解析中的特征识别话语连接词的两个论点时,比最先进的模型实现了3.6%的绝对改进,在使用自动生成的解析时,实现了9.0%的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信