Fuxian Li, Jie Feng, Huan Yan, Depeng Jin, Yong Li
{"title":"Crowd Flow Prediction for Irregular Regions with Semantic Graph Attention Network","authors":"Fuxian Li, Jie Feng, Huan Yan, Depeng Jin, Yong Li","doi":"10.1145/3501805","DOIUrl":null,"url":null,"abstract":"It is essential to predict crowd flow precisely in a city, which is practically partitioned into irregular regions based on road networks and functionality. However, prior works mainly focus on grid-based crowd flow prediction, where a city is divided into many regular grids. Although Convolutional Neural Netwok (CNN) is powerful to capture spatial dependence from grid-based Euclidean data, it fails to tackle non-Euclidean data, which reflect the correlations among irregular regions. Besides, prior works fail to jointly capture the hierarchical spatio-temporal dependence from both regular and irregular regions. Finally, the correlations among regions are time-varying and functionality-related. However, the combination of dynamic and semantic attributes of regions are ignored by related works. To address the above challenges, in this article, we propose a novel model to tackle the flow prediction task for irregular regions. First, we employ CNN and Graph Neural Network (GNN) to capture micro and macro spatial dependence among grid-based regions and irregular regions, respectively. Further, we think highly of the dynamic inter-region correlations and propose a location-aware and time-aware graph attention mechanism named Semantic Graph Attention Network (Semantic-GAT), based on dynamic node attribute embedding and multi-view graph reconstruction. Extensive experimental results based on two real-life datasets demonstrate that our model outperforms 10 baselines by reducing the prediction error around 8%.","PeriodicalId":123526,"journal":{"name":"ACM Transactions on Intelligent Systems and Technology (TIST)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Intelligent Systems and Technology (TIST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3501805","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12
Abstract
It is essential to predict crowd flow precisely in a city, which is practically partitioned into irregular regions based on road networks and functionality. However, prior works mainly focus on grid-based crowd flow prediction, where a city is divided into many regular grids. Although Convolutional Neural Netwok (CNN) is powerful to capture spatial dependence from grid-based Euclidean data, it fails to tackle non-Euclidean data, which reflect the correlations among irregular regions. Besides, prior works fail to jointly capture the hierarchical spatio-temporal dependence from both regular and irregular regions. Finally, the correlations among regions are time-varying and functionality-related. However, the combination of dynamic and semantic attributes of regions are ignored by related works. To address the above challenges, in this article, we propose a novel model to tackle the flow prediction task for irregular regions. First, we employ CNN and Graph Neural Network (GNN) to capture micro and macro spatial dependence among grid-based regions and irregular regions, respectively. Further, we think highly of the dynamic inter-region correlations and propose a location-aware and time-aware graph attention mechanism named Semantic Graph Attention Network (Semantic-GAT), based on dynamic node attribute embedding and multi-view graph reconstruction. Extensive experimental results based on two real-life datasets demonstrate that our model outperforms 10 baselines by reducing the prediction error around 8%.