A statistical analysis of shape reconstruction from areas of shadows

A. Poonawala, P. Milanfar, R. Gardner
{"title":"A statistical analysis of shape reconstruction from areas of shadows","authors":"A. Poonawala, P. Milanfar, R. Gardner","doi":"10.1109/ACSSC.2002.1197310","DOIUrl":null,"url":null,"abstract":"We present a statistical analysis of the problem of shape reconstruction from measurements of the brightness function (areas of shadows) by deriving the Cramer-Rao lower bound (CRLB) on the estimated 2-D boundary. Confidence region techniques are used to analyze and visualize the performance of the 2-D parametric shape estimation problem. The brightness function data is very weak, so a constrained CRLB is used on the shape parameters to form the confidence regions. Algorithms for reconstructing the shape of a convex object from multiple measurements of its brightness function were developed in [R. J. Gardner and P. Milanfar, \"Shape reconstruction from brightness functions\", August 2001] and [R. J. Gardner and P. Milanfar, \"Reconstruction of convex bodies from brightness functions\"]. The Cramer-Rao bound analysis presented provides statistical estimates that can be used for performance evaluation of these algorithms.","PeriodicalId":284950,"journal":{"name":"Conference Record of the Thirty-Sixth Asilomar Conference on Signals, Systems and Computers, 2002.","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference Record of the Thirty-Sixth Asilomar Conference on Signals, Systems and Computers, 2002.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACSSC.2002.1197310","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

We present a statistical analysis of the problem of shape reconstruction from measurements of the brightness function (areas of shadows) by deriving the Cramer-Rao lower bound (CRLB) on the estimated 2-D boundary. Confidence region techniques are used to analyze and visualize the performance of the 2-D parametric shape estimation problem. The brightness function data is very weak, so a constrained CRLB is used on the shape parameters to form the confidence regions. Algorithms for reconstructing the shape of a convex object from multiple measurements of its brightness function were developed in [R. J. Gardner and P. Milanfar, "Shape reconstruction from brightness functions", August 2001] and [R. J. Gardner and P. Milanfar, "Reconstruction of convex bodies from brightness functions"]. The Cramer-Rao bound analysis presented provides statistical estimates that can be used for performance evaluation of these algorithms.
从阴影区域重建形状的统计分析
我们通过在估计的二维边界上推导Cramer-Rao下界(CRLB),对亮度函数(阴影区域)测量的形状重建问题进行了统计分析。利用置信区域技术分析和可视化二维参数形状估计问题的性能。由于亮度函数数据非常弱,因此对形状参数使用约束CRLB来形成置信区域。从亮度函数的多次测量中重建凸物体形状的算法在[R]中得到了发展。J. Gardner, P. Milanfar,“基于亮度函数的形状重建”,2001 [R]。J. Gardner和P. Milanfar,“从亮度函数重建凸体”。提出的Cramer-Rao界分析提供了统计估计,可用于这些算法的性能评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信