Partial Annotation Scheme for Active Learning on Named Entity Recognition Tasks

J. Data Intell. Pub Date : 2020-09-01 DOI:10.26421/JDI1.3-2
Koga Kobayashi, Kei Wakabayashi
{"title":"Partial Annotation Scheme for Active Learning on Named Entity Recognition Tasks","authors":"Koga Kobayashi, Kei Wakabayashi","doi":"10.26421/JDI1.3-2","DOIUrl":null,"url":null,"abstract":"Active learning is a promising approach to alleviate the expensive annotation cost for making training data on named entity recognition (NER) tasks. However, since existing active learning methods on NER tasks implicitly assume the full annotation scheme of which the unit of an annotation request is the whole sentence, the efficiency of the data instance selection is limited. In this paper, we propose a new active learning method based on a partial annotation scheme, which selects a part of the sentences to be annotated and asks human annotators to label a specific part of the target sentences. In the experiment, we show that the partial annotation scheme can quickly train the proposed point-wise prediction model compared to the existing active learning methods on NER tasks.","PeriodicalId":232625,"journal":{"name":"J. Data Intell.","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Data Intell.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26421/JDI1.3-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Active learning is a promising approach to alleviate the expensive annotation cost for making training data on named entity recognition (NER) tasks. However, since existing active learning methods on NER tasks implicitly assume the full annotation scheme of which the unit of an annotation request is the whole sentence, the efficiency of the data instance selection is limited. In this paper, we propose a new active learning method based on a partial annotation scheme, which selects a part of the sentences to be annotated and asks human annotators to label a specific part of the target sentences. In the experiment, we show that the partial annotation scheme can quickly train the proposed point-wise prediction model compared to the existing active learning methods on NER tasks.
命名实体识别任务主动学习的部分标注方案
主动学习是一种很有前途的方法,可以减少在命名实体识别(NER)任务上生成训练数据的昂贵标注成本。然而,由于现有的基于NER任务的主动学习方法隐式地假设了完整的标注方案,其中标注请求的单位为整个句子,因此限制了数据实例选择的效率。在本文中,我们提出了一种新的基于部分标注方案的主动学习方法,该方法选择要标注的句子的一部分,并要求人类标注目标句子的特定部分。在实验中,我们证明了与现有的主动学习方法相比,部分标注方案可以快速训练出基于点的预测模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信