Data Analytics Using Two-Stage Intelligent Model Pipelining for Virtual Network Functions

T. Miyazawa, Ved P. Kafle, H. Asaeda
{"title":"Data Analytics Using Two-Stage Intelligent Model Pipelining for Virtual Network Functions","authors":"T. Miyazawa, Ved P. Kafle, H. Asaeda","doi":"10.1109/CloudNet53349.2021.9657133","DOIUrl":null,"url":null,"abstract":"The use of machine learning (ML) technologies to predict server workloads and proactively adjust the amount of computational resource to maximize the quality of services is an enormous challenge. In this study, we introduce an ITU-T Y.3177 compliant framework for autonomous resource control and management of virtualized network infrastructures. Based on this framework, we propose (1) an architecture for a data analytics system consisting of learning and prediction components, and (2) a two-stage intelligent model pipelining mechanism for the learning component that cascades two ML models, namely nonlinear regression and multiple regression, to understand the trends of the fluctuations in CPU usage of a network node and predict the peak CPU usage of the node in the time granularity of seconds. We evaluated the proposed mechanism in an experimental network that installed in-network caching nodes as network functions. We prove that our ML models are capable of performing agile data analytics in the time granularity of seconds and can reduce the prediction errors of peak CPU usage.","PeriodicalId":369247,"journal":{"name":"2021 IEEE 10th International Conference on Cloud Networking (CloudNet)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 10th International Conference on Cloud Networking (CloudNet)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CloudNet53349.2021.9657133","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The use of machine learning (ML) technologies to predict server workloads and proactively adjust the amount of computational resource to maximize the quality of services is an enormous challenge. In this study, we introduce an ITU-T Y.3177 compliant framework for autonomous resource control and management of virtualized network infrastructures. Based on this framework, we propose (1) an architecture for a data analytics system consisting of learning and prediction components, and (2) a two-stage intelligent model pipelining mechanism for the learning component that cascades two ML models, namely nonlinear regression and multiple regression, to understand the trends of the fluctuations in CPU usage of a network node and predict the peak CPU usage of the node in the time granularity of seconds. We evaluated the proposed mechanism in an experimental network that installed in-network caching nodes as network functions. We prove that our ML models are capable of performing agile data analytics in the time granularity of seconds and can reduce the prediction errors of peak CPU usage.
基于两阶段智能模型流水线的虚拟网络功能数据分析
使用机器学习(ML)技术来预测服务器工作负载并主动调整计算资源量以最大限度地提高服务质量是一项巨大的挑战。在本研究中,我们引入了一个符合ITU-T Y.3177的框架,用于虚拟化网络基础设施的自主资源控制和管理。基于该框架,我们提出了(1)由学习和预测组件组成的数据分析系统架构;(2)学习组件的两阶段智能模型流水线机制,通过级联非线性回归和多元回归两个ML模型,了解网络节点CPU使用的波动趋势,并以秒为时间粒度预测节点的CPU使用峰值。我们在一个实验网络中评估了所提出的机制,该网络安装了网络内缓存节点作为网络功能。我们证明了我们的机器学习模型能够在秒级的时间粒度内执行敏捷数据分析,并且可以减少峰值CPU使用的预测误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信