A Multi-Oriented Scene Text Detection Method Based on Location-Sensitive Segmentation

Bojun Xia, Zhongyue Chen, Xiaoping Chen
{"title":"A Multi-Oriented Scene Text Detection Method Based on Location-Sensitive Segmentation","authors":"Bojun Xia, Zhongyue Chen, Xiaoping Chen","doi":"10.1109/ICCC51575.2020.9345229","DOIUrl":null,"url":null,"abstract":"In recent years, regression-based scene text detection methods have achieved great success. However, because the network has a limited receptive field, the predicted bounding boxes cannot enclose the entire text instance when dealing with the long text instance. In this paper, we propose a multi-oriented scene text detection method based on location-sensitive segmentation. The main idea is that we divide the whole text instance detection into three sub-text instances (left part, middle part, and right part) detection. To form the final detection bounding box, we get three candidate bounding boxes from three sub-text instances and then merge them by getting the minimum rectangular area. Finally, the pixel-level score maps are used to filter false positives. Experiments on ICDAR2015 and MSRA-TD500 demonstrate that the proposed method achieves great performance. For ICDAR2015 Dataset, the method achieves an F-measure of 0.822 and a precision rate of 0.876.","PeriodicalId":386048,"journal":{"name":"2020 IEEE 6th International Conference on Computer and Communications (ICCC)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 6th International Conference on Computer and Communications (ICCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCC51575.2020.9345229","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, regression-based scene text detection methods have achieved great success. However, because the network has a limited receptive field, the predicted bounding boxes cannot enclose the entire text instance when dealing with the long text instance. In this paper, we propose a multi-oriented scene text detection method based on location-sensitive segmentation. The main idea is that we divide the whole text instance detection into three sub-text instances (left part, middle part, and right part) detection. To form the final detection bounding box, we get three candidate bounding boxes from three sub-text instances and then merge them by getting the minimum rectangular area. Finally, the pixel-level score maps are used to filter false positives. Experiments on ICDAR2015 and MSRA-TD500 demonstrate that the proposed method achieves great performance. For ICDAR2015 Dataset, the method achieves an F-measure of 0.822 and a precision rate of 0.876.
基于位置敏感分割的多方向场景文本检测方法
近年来,基于回归的场景文本检测方法取得了很大的成功。然而,由于网络具有有限的接受域,因此在处理长文本实例时,预测的边界框不能包含整个文本实例。本文提出了一种基于位置敏感分割的多方向场景文本检测方法。其主要思想是将整个文本实例检测分为三个子文本实例(左部分、中间部分和右部分)检测。为了形成最终的检测边界框,我们从三个子文本实例中得到三个候选边界框,然后通过获得最小矩形面积将它们合并。最后,使用像素级分数图来过滤误报。在ICDAR2015和MSRA-TD500上的实验表明,该方法取得了良好的性能。对于ICDAR2015数据集,该方法的f测度为0.822,准确率为0.876。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信