Finite generation and continuity of topological Hochschild and cyclic homology

B. Dundas, M. Morrow
{"title":"Finite generation and continuity of topological Hochschild and cyclic homology","authors":"B. Dundas, M. Morrow","doi":"10.24033/ASENS.2319","DOIUrl":null,"url":null,"abstract":"The goal of this paper is to establish fundamental properties of the Hochschild, topological Hochschild, and topological cyclic homologies of commutative, Noetherian rings, which are assumed only to be F-finite in the majority of our results. This mild hypothesis is satisfied in all cases of interest in finite and mixed characteristic algebraic geometry. We prove firstly that the topological Hochschild homology groups, and the homotopy groups of the fixed point spectra $TR^r$, are finitely generated modules. We use this to establish the continuity of these homology theories for any given ideal. A consequence of such continuity results is the pro Hochschild-Kostant-Rosenberg theorem for topological Hochschild and cyclic homology. Finally, we show more generally that the aforementioned finite generation and continuity properties remain true for any proper scheme over such a ring.","PeriodicalId":309711,"journal":{"name":"arXiv: K-Theory and Homology","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: K-Theory and Homology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24033/ASENS.2319","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

The goal of this paper is to establish fundamental properties of the Hochschild, topological Hochschild, and topological cyclic homologies of commutative, Noetherian rings, which are assumed only to be F-finite in the majority of our results. This mild hypothesis is satisfied in all cases of interest in finite and mixed characteristic algebraic geometry. We prove firstly that the topological Hochschild homology groups, and the homotopy groups of the fixed point spectra $TR^r$, are finitely generated modules. We use this to establish the continuity of these homology theories for any given ideal. A consequence of such continuity results is the pro Hochschild-Kostant-Rosenberg theorem for topological Hochschild and cyclic homology. Finally, we show more generally that the aforementioned finite generation and continuity properties remain true for any proper scheme over such a ring.
拓扑Hochschild与循环同调的有限生成与连续性
本文的目的是建立交换Noetherian环的Hochschild,拓扑Hochschild和拓扑循环同调的基本性质,在我们的大多数结果中只假设它们是f有限的。这个温和的假设在有限和混合特征代数几何的所有情况下都得到满足。首先证明了拓扑Hochschild同伦群和不动点谱$TR^r$的同伦群是有限生成模。我们用它来建立这些同调理论对任何给定理想的连续性。这种连续性结果的一个推论是拓扑Hochschild和循环同调的亲Hochschild- kostant - rosenberg定理。最后,我们更普遍地证明了上述有限生成和连续性质对这样一个环上的任何适当格式都成立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信